File size: 1,190 Bytes
14d1720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np


class ResStack(nn.Module):
    def __init__(self, channel, dilation=1):
        super(ResStack, self).__init__()

        self.block = nn.Sequential(
                nn.LeakyReLU(0.2),
                nn.ReflectionPad1d(dilation),
                nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=3, dilation=dilation)),
                nn.LeakyReLU(0.2),
                nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=1)),
            )
           

        self.shortcut = nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=1))
            

    def forward(self, x):
        return self.shortcut(x) + self.block(x)

    def remove_weight_norm(self):
        nn.utils.remove_weight_norm(self.block[2])
        nn.utils.remove_weight_norm(self.block[4])
        nn.utils.remove_weight_norm(self.shortcut)
        # def _remove_weight_norm(m):
        #     try:
        #         torch.nn.utils.remove_weight_norm(m)
        #     except ValueError:  # this module didn't have weight norm
        #         return
        #
        # self.apply(_remove_weight_norm)