File size: 6,321 Bytes
14d1720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import hashlib
import os
import random
import sys
import urllib
import urllib.request
from typing import Any, Iterable, Optional

import torch
from tqdm import tqdm


def stream_url(url: str,
               start_byte: Optional[int] = None,
               block_size: int = 32 * 1024,
               progress_bar: bool = True) -> Iterable:
    """Stream url by chunk
    Args:
        url (str): Url.
        start_byte (int, optional): Start streaming at that point (Default: ``None``).
        block_size (int, optional): Size of chunks to stream (Default: ``32 * 1024``).
        progress_bar (bool, optional): Display a progress bar (Default: ``True``).
    """

    # If we already have the whole file, there is no need to download it again
    req = urllib.request.Request(url, method="HEAD")
    url_size = int(urllib.request.urlopen(req).info().get("Content-Length", -1))
    if url_size == start_byte:
        return

    req = urllib.request.Request(url)
    if start_byte:
        req.headers["Range"] = "bytes={}-".format(start_byte)

    with urllib.request.urlopen(req) as upointer, tqdm(
            unit="B",
            unit_scale=True,
            unit_divisor=1024,
            total=url_size,
            disable=not progress_bar,
    ) as pbar:

        num_bytes = 0
        while True:
            chunk = upointer.read(block_size)
            if not chunk:
                break
            yield chunk
            num_bytes += len(chunk)
            pbar.update(len(chunk))


def validate_file(file_obj: Any, hash_value: str, hash_type: str = "sha256") -> bool:
    """Validate a given file object with its hash.
    Args:
        file_obj: File object to read from.
        hash_value (str): Hash for url.
        hash_type (str, optional): Hash type, among "sha256" and "md5" (Default: ``"sha256"``).
    Returns:
        bool: return True if its a valid file, else False.
    """

    if hash_type == "sha256":
        hash_func = hashlib.sha256()
    elif hash_type == "md5":
        hash_func = hashlib.md5()
    else:
        raise ValueError

    while True:
        # Read by chunk to avoid filling memory
        chunk = file_obj.read(1024**2)
        if not chunk:
            break
        hash_func.update(chunk)

    return hash_func.hexdigest() == hash_value


def download_url(url: str,
                 download_folder: str,
                 filename: Optional[str] = None,
                 hash_value: Optional[str] = None,
                 hash_type: str = "sha256",
                 progress_bar: bool = True,
                 resume: bool = False) -> None:
    """Download file to disk.
    Args:
        url (str): Url.
        download_folder (str): Folder to download file.
        filename (str, optional): Name of downloaded file. If None, it is inferred from the url (Default: ``None``).
        hash_value (str, optional): Hash for url (Default: ``None``).
        hash_type (str, optional): Hash type, among "sha256" and "md5" (Default: ``"sha256"``).
        progress_bar (bool, optional): Display a progress bar (Default: ``True``).
        resume (bool, optional): Enable resuming download (Default: ``False``).
    """

    req = urllib.request.Request(url, method="HEAD")
    req_info = urllib.request.urlopen(req).info()

    # Detect filename
    filename = filename or req_info.get_filename() or os.path.basename(url)
    filepath = os.path.join(download_folder, filename)
    if resume and os.path.exists(filepath):
        mode = "ab"
        local_size: Optional[int] = os.path.getsize(filepath)

    elif not resume and os.path.exists(filepath):
        raise RuntimeError("{} already exists. Delete the file manually and retry.".format(filepath))
    else:
        mode = "wb"
        local_size = None

    if hash_value and local_size == int(req_info.get("Content-Length", -1)):
        with open(filepath, "rb") as file_obj:
            if validate_file(file_obj, hash_value, hash_type):
                return
        raise RuntimeError("The hash of {} does not match. Delete the file manually and retry.".format(filepath))

    with open(filepath, mode) as fpointer:
        for chunk in stream_url(url, start_byte=local_size, progress_bar=progress_bar):
            fpointer.write(chunk)

    with open(filepath, "rb") as file_obj:
        if hash_value and not validate_file(file_obj, hash_value, hash_type):
            raise RuntimeError("The hash of {} does not match. Delete the file manually and retry.".format(filepath))


def download_checkpoint():
    url = 'https://zenodo.org/record/4625672/files/checkpoint_500000.pth'
    os.makedirs('./checkpoint/', exist_ok=True)
    return download_url(url,
                        './checkpoint/',
                        resume=True,
                        hash_value='14002c23879f6b5d0cd987f3c3e1a160',
                        hash_type='md5')


def download_waveglow(device):

    os.makedirs('./waveglow/', exist_ok=True)

    try:
        waveglow = torch.hub.load('./waveglow/DeepLearningExamples-torchhub/', 'nvidia_waveglow', source='local')
    except Exception:
        print((f'error occur: {sys.exc_info()}, If this occurs again, ' +
               'try to delete anyting in ./waveglow/DeepLearningExamples-torchhub/'))
        if random.randint(0, 1) == 0:
            download_url('https://hub.fastgit.org/nvidia/DeepLearningExamples/archive/torchhub.zip',
                         './waveglow',
                         hash_type='md5',
                         hash_value='27ef24b9c4a2ce6c26f26998aee26f44',
                         resume=True)
        else:
            download_url('https://github.com/nvidia/DeepLearningExamples/archive/torchhub.zip',
                         './waveglow',
                         hash_type='md5',
                         hash_value='27ef24b9c4a2ce6c26f26998aee26f44',
                         resume=True)
        os.system('unzip ./waveglow/DeepLearningExamples-torchhub.zip -d ./waveglow/')
        waveglow = torch.hub.load('./waveglow/DeepLearningExamples-torchhub/', 'nvidia_waveglow', source='local')

    waveglow = waveglow.remove_weightnorm(waveglow)
    waveglow.eval()
    for m in waveglow.modules():
        if 'Conv' in str(type(m)):
            setattr(m, 'padding_mode', 'zeros')
    waveglow.to(device)
    return waveglow