Spaces:
Sleeping
Sleeping
File size: 6,233 Bytes
14d1720 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import os
from typing import List, Union
import numpy as np
import torch
from torch import Tensor
from torch.utils.data import DataLoader, Dataset
from mtts.utils.logging import get_logger
logger = get_logger(__file__)
def pad_1D(inputs, PAD=0):
def pad_data(x, length, PAD):
x_padded = np.pad(x, (0, length - x.shape[0]), mode='constant', constant_values=PAD)
return x_padded
max_len = max((len(x) for x in inputs))
padded = np.stack([pad_data(x, max_len, PAD) for x in inputs])
return padded
def pad_2D(inputs, maxlen=None):
def pad(x, max_len):
PAD = 0
if np.shape(x)[0] > max_len:
raise ValueError("not max_len")
s = np.shape(x)[1]
x_padded = np.pad(x, (0, max_len - np.shape(x)[0]), mode='constant', constant_values=PAD)
return x_padded[:, :s]
if maxlen:
output = np.stack([pad(x, maxlen) for x in inputs])
else:
max_len = max(np.shape(x)[0] for x in inputs)
output = np.stack([pad(x, max_len) for x in inputs])
return output
class Tokenizer:
def __init__(self, vocab_file):
if vocab_file is None:
self.vocab = None
else:
self.vocab = open(vocab_file).read().split('\n')
self.v2i = {c: i for i, c in enumerate(self.vocab)}
def tokenize(self, text: Union[str, List]) -> Tensor:
if self.vocab is None: # direct mapping
if isinstance(text, str):
tokens = [int(t) for t in text.split()]
else:
tokens = [int(t) for t in text]
else:
if isinstance(text, str):
tokens = [self.v2i[t] for t in text.split()]
else:
tokens = [self.v2i[t] for t in text]
return torch.tensor(tokens)
def read_scp(scp_file):
with open(scp_file, 'rt') as f:
lines = f.read().split('\n')
name2value = {line.split()[0]: line.split()[1:] for line in lines if len(line) > 0}
return name2value
def check_duplicate(keys):
key_set0 = set(keys)
duplicate = None
if len(keys) != len(key_set0):
count = {k: 0 for k in key_set0}
for k in keys:
count[k] += 1
if count[k] >= 2:
duplicate = k
break
return duplicate
# raise ValueError('duplicated key detected: {duplicate}')
def check_keys(*args) -> None:
assert len(args) > 0
for kv in args:
dup = check_duplicate(list(kv.keys()))
if dup:
raise ValueError('duplicated key detected: {dup}:{kv[dup]}')
return None
class Dataset(Dataset):
def __init__(self, config, split='train'):
conf = config['dataset'][split]
self.name2wav = read_scp(conf['wav_scp'])
self.name2mel = read_scp(conf['mel_scp'])
self.name2dur = read_scp(conf['dur_scp'])
self.config = config
kv_to_check = [self.name2wav, self.name2mel, self.name2dur]
self.emb_scps = []
self.emb_tokenizers = []
for key in conf.keys():
if key.startswith('emb_type'):
name2emb = read_scp(conf[key]['scp'])
self.emb_scps += [name2emb]
emb_tok = Tokenizer(conf[key]['vocab'])
self.emb_tokenizers += [emb_tok]
logger.info('processed emb {}'.format(conf[key]['_name']))
kv_to_check += [name2emb]
check_keys(*kv_to_check)
self.names = [name for name in self.name2mel]
mel_size = {name: os.path.getsize(self.name2mel[name][0]) for name in self.names}
self.names = sorted(self.names, key=lambda x: mel_size[x])
logger.info(f'Shape of longest mel: {np.load(self.name2mel[self.names[-1]][0]).shape}')
logger.info(f'Shape of shortest mel: {np.load(self.name2mel[self.names[0]][0]).shape}')
def __len__(self):
return len(self.name2wav)
def __getitem__(self, idx):
key = self.names[idx]
token_tensor = []
for scp, tokenizer in zip(self.emb_scps, self.emb_tokenizers):
emb_text = scp[key]
tokens = tokenizer.tokenize(emb_text)
token_tensor.append(torch.unsqueeze(tokens, 0))
token_tensor = torch.cat(token_tensor, 0)
mel = np.load(self.name2mel[key][0])
if mel.shape[0] == self.config['fbank']['n_mels']:
mel = torch.tensor(mel.T)
else:
mel = torch.tensor(mel)
duration = torch.tensor([int(d) for d in self.name2dur[key]])
return token_tensor, duration, mel
def pad_1d_tensor(x, n):
if x.shape[0] >= n:
return x
x = torch.cat([x, torch.zeros((n - x.shape[0], ), dtype=x.dtype)], 0)
return x
def pad_2d_tensor(x, n):
if x.shape[1] >= n:
return x
x = torch.cat([x, torch.zeros((x.shape[0], n - x.shape[1]), dtype=x.dtype)], 1)
return x
def pad_mel(x, n):
if x.shape[0] >= n:
return x
x = torch.cat([x, torch.zeros((n - x.shape[0], x.shape[1]), dtype=x.dtype)], 0)
return x
def collate_fn(batch):
seq_len = []
mel_len = []
for (token_tensor, duration, mel) in batch:
seq_len.append(duration.shape[-1])
mel_len.append(mel.shape[0])
max_seq_len = max(seq_len)
max_mel_len = max(mel_len)
durations = []
token_tensors = []
mels = []
for token_tensor, duration, mel in batch:
duration = pad_1d_tensor(duration, max_seq_len)
durations.append(duration.unsqueeze_(0))
token_tensor = pad_2d_tensor(token_tensor, max_seq_len)
token_tensors.append(token_tensor.unsqueeze_(1))
mel = pad_mel(mel, max_mel_len)
mels.append(mel.unsqueeze_(0))
durations = torch.cat(durations, 0)
token_tensors = torch.cat(token_tensors, 1)
mels = torch.cat(mels, 0)
return token_tensors, durations, mels, torch.tensor(seq_len), torch.tensor(mel_len)
if __name__ == "__main__":
import yaml
with open('../../examples/aishell3/config.yaml') as f:
config = yaml.safe_load(f)
dataset = Dataset(config)
dataloader = DataLoader(dataset, batch_size=6, collate_fn=collate_fn)
batch = next(iter(dataloader))
print(type(batch[-1]))
|