Spaces:
Sleeping
Sleeping
File size: 6,680 Bytes
14d1720 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
from collections import OrderedDict
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
def get_mask_from_lengths(lengths, max_len=None):
batch_size = lengths.shape[0]
if max_len is None:
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len).unsqueeze(0).expand(batch_size, -1).to(lengths.device)
mask = (ids >= lengths.unsqueeze(1).expand(-1, max_len))
return mask
def pad(input_ele, mel_max_length=None):
if mel_max_length:
max_len = mel_max_length
else:
max_len = max([input_ele[i].size(0) for i in range(len(input_ele))])
out_list = list()
for i, batch in enumerate(input_ele):
if len(batch.shape) == 1:
one_batch_padded = F.pad(batch, (0, max_len - batch.size(0)), "constant", 0.0)
elif len(batch.shape) == 2:
one_batch_padded = F.pad(batch, (0, 0, 0, max_len - batch.size(0)), "constant", 0.0)
out_list.append(one_batch_padded)
out_padded = torch.stack(out_list)
return out_padded
# def clones(module, N):
# return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class Conv(nn.Module):
"""
Convolution Module
"""
def __init__(self,
in_channels: int,
out_channels: int,
kernel_size: int = 1,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
bias: bool = True,
w_init: str = 'linear'):
"""
:param in_channels: dimension of input
:param out_channels: dimension of output
:param kernel_size: size of kernel
:param stride: size of stride
:param padding: size of padding
:param dilation: dilation rate
:param bias: boolean. if True, bias is included.
:param w_init: str. weight inits with xavier initialization.
"""
super(Conv, self).__init__()
self.conv = nn.Conv1d(in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias)
def forward(self, x):
x = x.contiguous().transpose(1, 2)
x = self.conv(x)
x = x.contiguous().transpose(1, 2)
return x
class VarianceAdaptor(nn.Module):
""" Variance Adaptor """
def __init__(self,
duration_mean: float,
input_dim: int = 256,
filter_size: int = 256,
kernel_size: int = 3,
dropout: float = 0.5):
super(VarianceAdaptor, self).__init__()
self.duration_predictor = VariancePredictor(input_dim, filter_size, kernel_size, dropout)
self.length_regulator = LengthRegulator()
self.duration_mean = duration_mean
def forward(self,
x: Tensor,
src_mask: Tensor,
mel_mask: Optional[Tensor] = None,
duration_target: Optional[Tensor] = None,
max_len: Optional[int] = None,
d_control: float = 1.0):
log_duration_prediction = self.duration_predictor(x, src_mask)
if duration_target is not None:
duration_rounded = torch.clamp(torch.round((duration_target + self.duration_mean) * d_control), min=0)
x, mel_len = self.length_regulator(x, duration_rounded, max_len)
else:
# duration_rounded = torch.clamp(
# (torch.round(torch.exp(log_duration_prediction)-hp.log_offset)*d_control), min=0)
duration_rounded = torch.clamp(torch.round(
(log_duration_prediction.detach() + self.duration_mean) * d_control),
min=0)
# print('duration',duration_rounded)
x, mel_len = self.length_regulator(x, duration_rounded, max_len)
mel_mask = get_mask_from_lengths(mel_len)
return x, log_duration_prediction, mel_len, mel_mask
class LengthRegulator(nn.Module):
""" Length Regulator """
def __init__(self):
super(LengthRegulator, self).__init__()
def LR(self, x, duration, max_len):
output = list()
mel_len = list()
for batch, expand_target in zip(x, duration):
expanded = self.expand(batch, expand_target)
output.append(expanded)
mel_len.append(expanded.shape[0])
if max_len is not None:
output = pad(output, max_len)
else:
output = pad(output)
return output, torch.LongTensor(mel_len).to(x.device)
def expand(self, batch, predicted):
out = list()
for i, vec in enumerate(batch):
expand_size = predicted[i].item()
out.append(vec.expand(int(expand_size), -1))
out = torch.cat(out, 0)
return out
def forward(self, x, duration, max_len):
output, mel_len = self.LR(x, duration, max_len)
return output, mel_len
class VariancePredictor(nn.Module):
""" Duration, Pitch and Energy Predictor """
def __init__(self, encoder_dim: int = 256, filter_size: int = 256, kernel_size: int = 3, dropout: float = 0.5):
super(VariancePredictor, self).__init__()
self.input_size = encoder_dim
self.filter_size = filter_size
self.kernel = kernel_size
self.conv_output_size = filter_size
self.dropout = dropout
self.conv_layer = nn.Sequential(
OrderedDict([("conv1d_1",
Conv(self.input_size,
self.filter_size,
kernel_size=self.kernel,
padding=(self.kernel - 1) // 2)), ("relu_1", nn.LeakyReLU()),
("layer_norm_1", nn.LayerNorm(self.filter_size)), ("dropout_1", nn.Dropout(self.dropout)),
("conv1d_2", Conv(self.filter_size, self.filter_size, kernel_size=self.kernel, padding=1)),
("relu_2", nn.LeakyReLU()), ("layer_norm_2", nn.LayerNorm(self.filter_size)),
("dropout_2", nn.Dropout(self.dropout))]))
self.linear_layer = nn.Linear(self.conv_output_size, 1)
def forward(self, encoder_output, mask):
out = self.conv_layer(encoder_output)
out = self.linear_layer(out)
out = out.squeeze(-1)
if mask is not None:
out = out.masked_fill(mask, 0.)
return out
|