File size: 5,728 Bytes
14d1720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from typing import Optional

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor


def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
    ''' Sinusoid position encoding table '''
    def cal_angle(position, hid_idx):
        return position / np.power(10000, 2 * (hid_idx // 2) / d_hid)

    def get_posi_angle_vec(position):
        return [cal_angle(position, hid_j) for hid_j in range(d_hid)]

    sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])

    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

    if padding_idx is not None:
        # zero vector for padding dimension
        sinusoid_table[padding_idx] = 0.

    return torch.FloatTensor(sinusoid_table)


class ScaledDotProductAttention(nn.Module):
    ''' Scaled Dot-Product Attention '''
    def __init__(self, temperature):
        super().__init__()
        self.temperature = temperature
        self.softmax = nn.Softmax(dim=2)

    def forward(self, q, k, v, mask=None):

        attn = torch.bmm(q, k.transpose(1, 2))
        attn = attn / self.temperature
        if mask is not None:
            attn = attn.masked_fill(mask, -np.inf)

        attn = self.softmax(attn)
        output = torch.bmm(attn, v)

        return output, attn


class MultiHeadAttention(nn.Module):
    ''' Multi-Head Attention module '''
    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super().__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k)
        self.w_ks = nn.Linear(d_model, n_head * d_k)
        self.w_vs = nn.Linear(d_model, n_head * d_v)

        self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5))
        self.layer_norm = nn.LayerNorm(d_model)

        self.fc = nn.Linear(n_head * d_v, d_model)

        self.dropout = nn.Dropout(dropout)

    def forward(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None):

        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head

        sz_b, len_q, _ = q.size()
        sz_b, len_k, _ = k.size()
        sz_b, len_v, _ = v.size()

        residual = q

        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
        q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k)  # (n*b) x lq x dk
        k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k)  # (n*b) x lk x dk
        v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v)  # (n*b) x lv x dv

        mask = mask.repeat(n_head, 1, 1).to(q.device)
        output, attn = self.attention(q, k, v, mask=mask)

        output = output.view(n_head, sz_b, len_q, d_v)
        output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1)  # b x lq x (n*dv)

        output = self.dropout(self.fc(output))
        output = self.layer_norm(output + residual)

        return output, attn


class PositionwiseFeedForward(nn.Module):
    ''' A two-feed-forward-layer module '''
    def __init__(self, d_in: int, d_hid: int, kernel_size: int = 9, dropout: float = 0.1):
        super().__init__()

        # Use Conv1D
        # position-wise
        self.w_1 = nn.Conv1d(d_in, d_hid, kernel_size=kernel_size, padding=(kernel_size - 1) // 2)
        # position-wise
        self.w_2 = nn.Conv1d(d_hid, d_in, kernel_size=1, padding=0)

        self.layer_norm = nn.LayerNorm(d_in)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x: Tensor):
        residual = x
        output = x.transpose(1, 2)
        output = self.w_2(F.relu(self.w_1(output)))
        output = output.transpose(1, 2)
        output = self.dropout(output)
        output = self.layer_norm(output + residual)

        return output


class FFTBlock(torch.nn.Module):
    """FFT Block"""
    def __init__(self, d_model: int, d_inner: int, n_head: int, d_k: int, d_v: int, dropout: float = 0.1):
        super(FFTBlock, self).__init__()

        self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
        self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)

    def forward(self, enc_input: Tensor, mask: Optional[Tensor] = None, attn_mask: Optional[Tensor] = None):

        enc_output, enc_slf_attn = self.slf_attn(enc_input, enc_input, enc_input, mask=attn_mask)
        enc_output = enc_output.masked_fill(mask.unsqueeze(-1), 0)

        enc_output = self.pos_ffn(enc_output)
        enc_output = enc_output.masked_fill(mask.unsqueeze(-1), 0)

        return enc_output, enc_slf_attn


class ConvNorm(torch.nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=1,
                 stride=1,
                 padding=None,
                 dilation=1,
                 bias=True,
                 w_init_gain='linear'):
        super(ConvNorm, self).__init__()

        if padding is None:
            assert (kernel_size % 2 == 1)
            padding = int(dilation * (kernel_size - 1) / 2)

        self.conv = torch.nn.Conv1d(in_channels,
                                    out_channels,
                                    kernel_size=kernel_size,
                                    stride=stride,
                                    padding=padding,
                                    dilation=dilation,
                                    bias=bias)

    def forward(self, signal):
        conv_signal = self.conv(signal)

        return conv_signal