Spaces:
Sleeping
Sleeping
File size: 8,025 Bytes
14d1720 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import argparse
import os
import numpy as np
import torch
import yaml
from torch.optim import SGD, Adam
from torch.optim.lr_scheduler import CyclicLR, OneCycleLR, ReduceLROnPlateau
from torch.utils.data import BatchSampler, DataLoader, SubsetRandomSampler
from torch.utils.tensorboard import SummaryWriter
from mtts.datasets.dataset import Dataset, collate_fn
from mtts.loss import FS2Loss
from mtts.models.fs2_model import FastSpeech2
from mtts.optimizer import ScheduledOptim
from mtts.utils.logging import get_logger
from mtts.utils.utils import save_image
logger = get_logger(__file__)
class AverageMeter:
def __init__(self):
self.mel_loss_v = 0.0
self.posnet_loss_v = 0.0
self.d_loss_v = 0.0
self.total_loss_v = 0.0
self._i = 0
def update(self, mel_loss, posnet_loss, d_loss, total_loss):
self.mel_loss_v = ((self.mel_loss_v * self._i) + mel_loss.item()) / (self._i + 1)
self.posnet_loss_v = ((self.posnet_loss_v * self._i) + posnet_loss.item()) / (self._i + 1)
self.d_loss_v = ((self.d_loss_v * self._i) + d_loss.item()) / (self._i + 1)
self.total_loss_v = ((self.total_loss_v * self._i) + total_loss.item()) / (self._i + 1)
self._i += 1
return self.mel_loss_v, self.posnet_loss_v, self.d_loss_v, self.total_loss_v
def split_batch(data, i, n_split):
n = data[1].shape[0]
k = n // n_split
ds = [d[:, i * k:(i + 1) * k] if j == 0 else d[i * k:(i + 1) * k] for j, d in enumerate(data)]
return ds
def shuffle(data):
n = data[1].shape[0]
idx = np.random.permutation(n)
data_shuffled = [d[:, idx] if i == 0 else d[idx] for i, d in enumerate(data)]
return data_shuffled
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-r', '--restore', type=str, default='')
parser.add_argument('-c', '--config', type=str, default='./config.yaml')
parser.add_argument('-d', '--device', type=str, default='cuda')
args = parser.parse_args()
device = args.device
logger.info(f'using device {device}')
with open(args.config) as f:
config = yaml.safe_load(f)
logger.info(f.read())
dataset = Dataset(config)
dataloader = DataLoader(dataset,
batch_size=config['training']['batch_size'],
shuffle=False,
collate_fn=collate_fn,
drop_last=False,
num_workers=config['training']['num_workers'])
step_per_epoch = len(dataloader) * config['training']['batch_size']
model = FastSpeech2(config)
model = model.to(args.device)
#model.encoder.emb_layers.to(device) # ?
optim_conf = config['optimizer']
optim_class = eval(optim_conf['type'])
logger.info(optim_conf['params'])
optimizer = optim_class(model.parameters(), **optim_conf['params'])
if args.restore != '':
logger.info(f'Loading checkpoint {args.restore}')
content = torch.load(args.restore)
model.load_state_dict(content['model'])
optimizer.load_state_dict(content['optimizer'])
current_step = content['step']
start_epoch = current_step // step_per_epoch
logger.info(f'loaded checkpoint at step {current_step}, epoch {start_epoch}')
else:
current_step = 0
start_epoch = 0
logger.info(f'Start training from scratch,step={current_step},epoch={start_epoch}')
lrs = np.linspace(0, optim_conf['params']['lr'], optim_conf['n_warm_up_step'])
Scheduler = eval(config['lr_scheduler']['type'])
lr_scheduler = Scheduler(optimizer, **config['lr_scheduler']['params'])
loss_fn = FS2Loss().to(device)
train_logger = SummaryWriter(config['training']['log_path'])
val_logger = SummaryWriter(config['training']['log_path'])
avg = AverageMeter()
for epoch in range(start_epoch, config['training']['epochs']):
model.train()
for i, data in enumerate(dataloader):
data = shuffle(data)
max_src_len = torch.max(data[-2])
max_mel_len = torch.max(data[-1])
for k in range(config['training']['batch_split']):
data_split = split_batch(data, k, config['training']['batch_split'])
tokens, duration, mel_truth, seq_len, mel_len = data_split
#print(mel_len)
tokens = tokens.to(device)
duration = duration.to(device)
mel_truth = mel_truth.to(device)
seq_len = seq_len.to(device)
mel_len = mel_len.to(device)
# if torch.max(log_D) > 50:
# logger.info('skipping sample')
# continue
mel_truth = mel_truth - config['fbank']['mel_mean']
duration = duration - config['duration_predictor']['duration_mean']
output = model(tokens, seq_len, mel_len, duration, max_src_len=max_src_len, max_mel_len=max_mel_len)
mel_pred, mel_postnet, d_pred, src_mask, mel_mask, mel_len = output
mel_loss, mel_postnet_loss, d_loss = loss_fn(d_pred, duration, mel_pred, mel_postnet, mel_truth,
~src_mask, ~mel_mask)
total_loss = mel_postnet_loss + d_loss + mel_loss
ml, pl, dl, tl = avg.update(mel_loss, mel_postnet_loss, d_loss, total_loss)
lr = optimizer.param_groups[0]['lr']
msg = f'epoch:{epoch},step:{current_step}|{step_per_epoch},loss:{tl:.3},mel:{ml:.3},'
msg += f'mel_postnet:{pl:.3},duration:{dl:.3},{lr:.3}'
if current_step % config['training']['log_step'] == 0:
logger.info(msg)
total_loss = total_loss / config['training']['acc_step']
total_loss.backward()
if current_step % config['training']['acc_step'] != 0:
continue
current_step += 1
if current_step < config['optimizer']['n_warm_up_step']:
lr = lrs[current_step]
optimizer.param_groups[0]['lr'] = lr
optimizer.step()
optimizer.zero_grad()
else:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if current_step % config['training']['synth_step'] == 0:
mel_pred = mel_pred.detach().cpu().numpy()
mel_truth = mel_truth.detach().cpu().numpy()
saved_path = os.path.join(config['training']['log_path'], f'{current_step}.png')
save_image(mel_truth[0][:mel_len[0]], mel_pred[0][:mel_len[0]], saved_path)
np.save(saved_path + '.npy', mel_pred[0])
if current_step % config['training']['log_step'] == 0:
train_logger.add_scalar('total_loss', tl, current_step)
train_logger.add_scalar('mel_loss', ml, current_step)
train_logger.add_scalar('mel_postnet_loss', pl, current_step)
train_logger.add_scalar('duration_loss', dl, current_step)
if current_step % config['training']['checkpoint_step'] == 0:
if not os.path.exists(config['training']['checkpoint_path']):
os.makedirs(config['training']['checkpoint_path'])
ckpt_file = os.path.join(config['training']['checkpoint_path'],
'checkpoint_{}.pth.tar'.format(current_step))
content = {'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'step': current_step}
torch.save(content, ckpt_file)
logger.info(f'Saved model at step {current_step} to {ckpt_file}')
logger.info(f"End of training for epoch {config['training']['epochs']}")
|