Spaces:
Sleeping
Sleeping
# ***************************************************************************** | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# * Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# * Redistributions in binary form must reproduce the above copyright | |
# notice, this list of conditions and the following disclaimer in the | |
# documentation and/or other materials provided with the distribution. | |
# * Neither the name of the NVIDIA CORPORATION nor the | |
# names of its contributors may be used to endorse or promote products | |
# derived from this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY | |
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
# | |
# *****************************************************************************\ | |
import os | |
import random | |
import argparse | |
import json | |
import torch | |
import torch.utils.data | |
import sys | |
from scipy.io.wavfile import read | |
# We're using the audio processing from TacoTron2 to make sure it matches | |
sys.path.insert(0, 'tacotron2') | |
from .tacotron2.layers import TacotronSTFT | |
MAX_WAV_VALUE = 32768.0 | |
def files_to_list(filename): | |
""" | |
Takes a text file of filenames and makes a list of filenames | |
""" | |
with open(filename, encoding='utf-8') as f: | |
files = f.readlines() | |
files = [f.rstrip() for f in files] | |
return files | |
def load_wav_to_torch(full_path): | |
""" | |
Loads wavdata into torch array | |
""" | |
sampling_rate, data = read(full_path) | |
return torch.from_numpy(data).float(), sampling_rate | |
class Mel2Samp(torch.utils.data.Dataset): | |
""" | |
This is the main class that calculates the spectrogram and returns the | |
spectrogram, audio pair. | |
""" | |
def __init__(self, training_files, segment_length, filter_length, | |
hop_length, win_length, sampling_rate, mel_fmin, mel_fmax): | |
self.audio_files = files_to_list(training_files) | |
random.seed(1234) | |
random.shuffle(self.audio_files) | |
self.stft = TacotronSTFT(filter_length=filter_length, | |
hop_length=hop_length, | |
win_length=win_length, | |
sampling_rate=sampling_rate, | |
mel_fmin=mel_fmin, mel_fmax=mel_fmax) | |
self.segment_length = segment_length | |
self.sampling_rate = sampling_rate | |
def get_mel(self, audio): | |
audio_norm = audio / MAX_WAV_VALUE | |
audio_norm = audio_norm.unsqueeze(0) | |
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False) | |
melspec = self.stft.mel_spectrogram(audio_norm) | |
melspec = torch.squeeze(melspec, 0) | |
return melspec | |
def __getitem__(self, index): | |
# Read audio | |
filename = self.audio_files[index] | |
audio, sampling_rate = load_wav_to_torch(filename) | |
if sampling_rate != self.sampling_rate: | |
raise ValueError("{} SR doesn't match target {} SR".format( | |
sampling_rate, self.sampling_rate)) | |
# Take segment | |
if audio.size(0) >= self.segment_length: | |
max_audio_start = audio.size(0) - self.segment_length | |
audio_start = random.randint(0, max_audio_start) | |
audio = audio[audio_start:audio_start+self.segment_length] | |
else: | |
audio = torch.nn.functional.pad(audio, (0, self.segment_length - audio.size(0)), 'constant').data | |
mel = self.get_mel(audio) | |
audio = audio / MAX_WAV_VALUE | |
return (mel, audio) | |
def __len__(self): | |
return len(self.audio_files) | |
# =================================================================== | |
# Takes directory of clean audio and makes directory of spectrograms | |
# Useful for making test sets | |
# =================================================================== | |
if __name__ == "__main__": | |
# Get defaults so it can work with no Sacred | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-f', "--filelist_path", required=True) | |
parser.add_argument('-c', '--config', type=str, | |
help='JSON file for configuration') | |
parser.add_argument('-o', '--output_dir', type=str, | |
help='Output directory') | |
args = parser.parse_args() | |
with open(args.config) as f: | |
data = f.read() | |
data_config = json.loads(data)["data_config"] | |
mel2samp = Mel2Samp(**data_config) | |
filepaths = files_to_list(args.filelist_path) | |
# Make directory if it doesn't exist | |
if not os.path.isdir(args.output_dir): | |
os.makedirs(args.output_dir) | |
os.chmod(args.output_dir, 0o775) | |
for filepath in filepaths: | |
audio, sr = load_wav_to_torch(filepath) | |
melspectrogram = mel2samp.get_mel(audio) | |
filename = os.path.basename(filepath) | |
new_filepath = args.output_dir + '/' + filename + '.pt' | |
print(new_filepath) | |
torch.save(melspectrogram, new_filepath) | |