text_to_speech / mtts /utils /download_utils.py
wuxulong19950206
First model version
14d1720
import hashlib
import os
import random
import sys
import urllib
import urllib.request
from typing import Any, Iterable, Optional
import torch
from tqdm import tqdm
def stream_url(url: str,
start_byte: Optional[int] = None,
block_size: int = 32 * 1024,
progress_bar: bool = True) -> Iterable:
"""Stream url by chunk
Args:
url (str): Url.
start_byte (int, optional): Start streaming at that point (Default: ``None``).
block_size (int, optional): Size of chunks to stream (Default: ``32 * 1024``).
progress_bar (bool, optional): Display a progress bar (Default: ``True``).
"""
# If we already have the whole file, there is no need to download it again
req = urllib.request.Request(url, method="HEAD")
url_size = int(urllib.request.urlopen(req).info().get("Content-Length", -1))
if url_size == start_byte:
return
req = urllib.request.Request(url)
if start_byte:
req.headers["Range"] = "bytes={}-".format(start_byte)
with urllib.request.urlopen(req) as upointer, tqdm(
unit="B",
unit_scale=True,
unit_divisor=1024,
total=url_size,
disable=not progress_bar,
) as pbar:
num_bytes = 0
while True:
chunk = upointer.read(block_size)
if not chunk:
break
yield chunk
num_bytes += len(chunk)
pbar.update(len(chunk))
def validate_file(file_obj: Any, hash_value: str, hash_type: str = "sha256") -> bool:
"""Validate a given file object with its hash.
Args:
file_obj: File object to read from.
hash_value (str): Hash for url.
hash_type (str, optional): Hash type, among "sha256" and "md5" (Default: ``"sha256"``).
Returns:
bool: return True if its a valid file, else False.
"""
if hash_type == "sha256":
hash_func = hashlib.sha256()
elif hash_type == "md5":
hash_func = hashlib.md5()
else:
raise ValueError
while True:
# Read by chunk to avoid filling memory
chunk = file_obj.read(1024**2)
if not chunk:
break
hash_func.update(chunk)
return hash_func.hexdigest() == hash_value
def download_url(url: str,
download_folder: str,
filename: Optional[str] = None,
hash_value: Optional[str] = None,
hash_type: str = "sha256",
progress_bar: bool = True,
resume: bool = False) -> None:
"""Download file to disk.
Args:
url (str): Url.
download_folder (str): Folder to download file.
filename (str, optional): Name of downloaded file. If None, it is inferred from the url (Default: ``None``).
hash_value (str, optional): Hash for url (Default: ``None``).
hash_type (str, optional): Hash type, among "sha256" and "md5" (Default: ``"sha256"``).
progress_bar (bool, optional): Display a progress bar (Default: ``True``).
resume (bool, optional): Enable resuming download (Default: ``False``).
"""
req = urllib.request.Request(url, method="HEAD")
req_info = urllib.request.urlopen(req).info()
# Detect filename
filename = filename or req_info.get_filename() or os.path.basename(url)
filepath = os.path.join(download_folder, filename)
if resume and os.path.exists(filepath):
mode = "ab"
local_size: Optional[int] = os.path.getsize(filepath)
elif not resume and os.path.exists(filepath):
raise RuntimeError("{} already exists. Delete the file manually and retry.".format(filepath))
else:
mode = "wb"
local_size = None
if hash_value and local_size == int(req_info.get("Content-Length", -1)):
with open(filepath, "rb") as file_obj:
if validate_file(file_obj, hash_value, hash_type):
return
raise RuntimeError("The hash of {} does not match. Delete the file manually and retry.".format(filepath))
with open(filepath, mode) as fpointer:
for chunk in stream_url(url, start_byte=local_size, progress_bar=progress_bar):
fpointer.write(chunk)
with open(filepath, "rb") as file_obj:
if hash_value and not validate_file(file_obj, hash_value, hash_type):
raise RuntimeError("The hash of {} does not match. Delete the file manually and retry.".format(filepath))
def download_checkpoint():
url = 'https://zenodo.org/record/4625672/files/checkpoint_500000.pth'
os.makedirs('./checkpoint/', exist_ok=True)
return download_url(url,
'./checkpoint/',
resume=True,
hash_value='14002c23879f6b5d0cd987f3c3e1a160',
hash_type='md5')
def download_waveglow(device):
os.makedirs('./waveglow/', exist_ok=True)
try:
waveglow = torch.hub.load('./waveglow/DeepLearningExamples-torchhub/', 'nvidia_waveglow', source='local')
except Exception:
print((f'error occur: {sys.exc_info()}, If this occurs again, ' +
'try to delete anyting in ./waveglow/DeepLearningExamples-torchhub/'))
if random.randint(0, 1) == 0:
download_url('https://hub.fastgit.org/nvidia/DeepLearningExamples/archive/torchhub.zip',
'./waveglow',
hash_type='md5',
hash_value='27ef24b9c4a2ce6c26f26998aee26f44',
resume=True)
else:
download_url('https://github.com/nvidia/DeepLearningExamples/archive/torchhub.zip',
'./waveglow',
hash_type='md5',
hash_value='27ef24b9c4a2ce6c26f26998aee26f44',
resume=True)
os.system('unzip ./waveglow/DeepLearningExamples-torchhub.zip -d ./waveglow/')
waveglow = torch.hub.load('./waveglow/DeepLearningExamples-torchhub/', 'nvidia_waveglow', source='local')
waveglow = waveglow.remove_weightnorm(waveglow)
waveglow.eval()
for m in waveglow.modules():
if 'Conv' in str(type(m)):
setattr(m, 'padding_mode', 'zeros')
waveglow.to(device)
return waveglow