import sys import torch from .utils.stft import STFT class Denoiser(torch.nn.Module): """ Removes model bias from audio produced with waveglow """ def __init__(self, melgan, filter_length=1024, n_overlap=4, win_length=1024, mode='zeros',device='cpu'): super(Denoiser, self).__init__() self.stft = STFT(filter_length=filter_length, hop_length=int(filter_length/n_overlap), win_length=win_length,device=device).to(device) if mode == 'zeros': mel_input = torch.zeros( (1, 80, 88)).to(device) elif mode == 'normal': mel_input = torch.randn( (1, 80, 88)).to(device) else: raise Exception("Mode {} if not supported".format(mode)) with torch.no_grad(): bias_audio = melgan.inference(mel_input).float() # [B, 1, T] bias_spec, _ = self.stft.transform(bias_audio.squeeze(0)) self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None]) self.device = device self.to(device) def forward(self, audio, strength=0.1): audio_spec, audio_angles = self.stft.transform(audio.to(self.device).float()) audio_spec_denoised = audio_spec.to(self.device) - self.bias_spec * strength audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0) audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles.to(self.device)) return audio_denoised