import os import glob import tqdm import torch import argparse from scipy.io.wavfile import write import numpy as np from model.generator import ModifiedGenerator from utils.hparams import HParam, load_hparam_str from denoiser import Denoiser MAX_WAV_VALUE = 32768.0 def main(args): checkpoint = torch.load(args.checkpoint_path) if args.config is not None: hp = HParam(args.config) else: hp = load_hparam_str(checkpoint['hp_str']) model = ModifiedGenerator(hp.audio.n_mel_channels, hp.model.n_residual_layers, ratios=hp.model.generator_ratio, mult = hp.model.mult, out_band = hp.model.out_channels).cuda() model.load_state_dict(checkpoint['model_g']) model.eval(inference=True) with torch.no_grad(): mel = torch.from_numpy(np.load(args.input)) if len(mel.shape) == 2: mel = mel.unsqueeze(0) mel = mel.cuda() audio = model.inference(mel) audio = audio.squeeze(0) # collapse all dimension except time axis if args.d: denoiser = Denoiser(model).cuda() audio = denoiser(audio, 0.01) audio = audio.squeeze() audio = audio[:-(hp.audio.hop_length*10)] audio = MAX_WAV_VALUE * audio audio = audio.clamp(min=-MAX_WAV_VALUE, max=MAX_WAV_VALUE-1) audio = audio.short() audio = audio.cpu().detach().numpy() out_path = args.input.replace('.npy', '_reconstructed_epoch%04d.wav' % checkpoint['epoch']) write(out_path, hp.audio.sampling_rate, audio) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, default=None, help="yaml file for config. will use hp_str from checkpoint if not given.") parser.add_argument('-p', '--checkpoint_path', type=str, required=True, help="path of checkpoint pt file for evaluation") parser.add_argument('-i', '--input', type=str, required=True, help="directory of mel-spectrograms to invert into raw audio. ") parser.add_argument('-d', action='store_true', help="denoising ") args = parser.parse_args() main(args)