File size: 8,804 Bytes
35153f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import json
import logging
import deepspeed
from pathlib import Path
from open_clip.factory import load_state_dict, get_model_config
from open_clip.model import CLIPVisionCfg, CLIPTextCfg, _build_vision_tower, convert_to_custom_text_state_dict, resize_pos_embed
from typing import Dict, Optional
from transformers.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled

open_clip_config = {
  "model_cfg": {
    "embed_dim": 768,
    "vision_cfg": {
      "timm_model_name": "convnext_large",
      "timm_model_pretrained": False,
      "timm_pool": "",
      "timm_proj": "mlp",
      "timm_drop": 0.0,
      "timm_drop_path": 0.1,
      "image_size": 320
    },
    "text_cfg": {
      "context_length": 77,
      "vocab_size": 49408,
      "width": 768,
      "heads": 12,
      "layers": 16
    }
  },
  "preprocess_cfg": {
    "mean": [
      0.48145466,
      0.4578275,
      0.40821073
    ],
    "std": [
      0.26862954,
      0.26130258,
      0.27577711
    ]
  }
}

# xxx
class OpenCLIPVisionTower(nn.Module):
    def __init__(self, vision_tower, args, delay_load=False):
        super().__init__()

        self.is_loaded = False
        self.vision_tower_name = vision_tower
        self.vision_config = open_clip_config
        # json.load(open(os.path.join(vision_tower,'open_clip_config.json'), 'r'))
        self.is_optimize = getattr(args, 'optimize_vision_tower_aux', False)

        if not delay_load:
            self.load_model()

    def load_model(self):
        # print(self.vision_tower_name)

        ckpt_path = os.path.join(self.vision_tower_name, 'open_clip_pytorch_model.bin')
        if 'convnext' in self.vision_tower_name:
            if 'large' in self.vision_tower_name and 'd_320' in self.vision_tower_name:
                self.model_type = 'convnext_large_d_320'
                self.model_channel = [192, 384, 768, 1536] # stage 0-3
            elif 'base' in self.vision_tower_name and 'w_320' in self.vision_tower_name:
                self.model_type = 'convnext_base_w_320'
                self.model_channel = [128, 256, 512, 1024]
            elif 'xxlarge' in self.vision_tower_name:
                self.model_type = 'convnext_xxlarge'
                self.model_channel = [384, 768, 1536, 3072]

        clip_model = CLIP(**get_model_config(self.model_type))
        clip_model.visual.trunk.norm_pre = None
        clip_model.visual.trunk.head = None
        clip_model.visual.head = None
        print(f'Loading pretrained weights ({self.model_type}).')
        load_checkpoint(clip_model, ckpt_path, strict=False)

        self.is_loaded = True
        # decompose stem and stages blocks in vision tower
        self.vision_stem = clip_model.visual.trunk.stem
        self.vision_stages = clip_model.visual.trunk.stages
        self.vision_stem.requires_grad_(False)
        self.vision_stages.requires_grad_(False)
    
    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_feature = self.backbone(image.to(device=self.device, dtype=self.dtype).unsqueeze(0))
                image_features.append(image_feature)
        else:
            image_features = self.backbone(images.to(device=self.device, dtype=self.dtype))

        return image_features

    def backbone(self, images):
        if not self.is_optimize:
            with torch.no_grad():
                results = self.basic_forward(images)
        else:
            results = self.basic_forward(images)

        target_size = (results['stage_0'].shape[-2], results['stage_0'].shape[-1])
        result_cat = []
        for _stage in results:
            if _stage == 'stage_0':
                result_cat.append(results[_stage].contiguous())
            else:
                result_cat.append(F.interpolate(results[_stage].float().contiguous() , 
                                                size=target_size, 
                                                mode='bilinear', 
                                                align_corners=False).to(dtype=results[_stage].dtype))
        result_cat = torch.cat(result_cat, dim=1)

        return result_cat.contiguous()

    def basic_forward(self, images):
        results = {}    
        x = self.vision_stem(images)
        for _idx in range(len(self.vision_stages)):
            x = self.vision_stages[_idx](x)
            results[f'stage_{_idx}'] = x
        return results

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_stem[0].weight.dtype

    @property
    def device(self):
        return self.vision_stem[0].weight.device

    @property
    def config(self):
        return self.vision_config

    @property
    def hidden_size(self):
        return sum(self.model_channel)

# modified function from open_clip to support zero3 stage
def load_checkpoint(model, checkpoint_path, strict=True):
    if Path(checkpoint_path).suffix in ('.npz', '.npy'):
        from open_clip.big_vision import load_big_vision_weights
        load_big_vision_weights(model, checkpoint_path)
        return {}

    state_dict = load_state_dict(checkpoint_path)
    # detect old format and make compatible with new format
    if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
        state_dict = convert_to_custom_text_state_dict(state_dict)
    # If loading a non-SigLIP model for SigLIP training. See https://github.com/mlfoundations/open_clip/issues/712
    # if 'logit_bias' not in state_dict and model.logit_bias is not None:
    #     state_dict["logit_bias"] = torch.zeros_like(state_dict["logit_scale"])
    # Certain text transformers no longer expect position_ids after transformers==4.31
    position_id_key = 'text.transformer.embeddings.position_ids'
    if position_id_key in state_dict and not hasattr(model, position_id_key):
        del state_dict[position_id_key]
    resize_pos_embed(state_dict, model)
    # resize_text_pos_embed(state_dict, model)
    #incompatible_keys = model.load_state_dict(state_dict, strict=strict)
    if is_deepspeed_zero3_enabled():

        error_msgs = []

        def load(module: nn.Module, state_dict, prefix=""):
            metadata = None

            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
            # Parameters of module and children will start with prefix. We can exit early if there are none in this
            # state_dict
            if len([key for key in state_dict if key.startswith(prefix)]) > 0:
                if is_deepspeed_zero3_enabled():
                    # In sharded models, each shard has only part of the full state_dict, so only gather
                    # parameters that are in the current state_dict.
                    named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
                    params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters]
                    if len(params_to_gather) > 0:
                        # because zero3 puts placeholders in model params, this context
                        # manager gathers (unpartitions) the params of the current layer, then loads from
                        # the state dict and then re-partitions them again
                        with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
                            if torch.distributed.get_rank() == 0:
                                module._load_from_state_dict(*args)
                else:
                    module._load_from_state_dict(*args)

            for name, child in module._modules.items():
                if child is not None:
                    load(child, state_dict, prefix + name + ".")

        load(model, state_dict)
        incompatible_keys = []
    else:
        incompatible_keys = model.load_state_dict(state_dict, strict=strict)
        logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}")
    return incompatible_keys

class CLIP(nn.Module):
    output_dict: torch.jit.Final[bool]

    def __init__(
            self,
            embed_dim: int,
            vision_cfg: CLIPVisionCfg,
            text_cfg: CLIPTextCfg,
            quick_gelu: bool = False,
            cast_dtype: Optional[torch.dtype] = None,
            output_dict: bool = False,
    ):
        super().__init__()
        self.output_dict = output_dict

        self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)