Spaces:
Runtime error
Runtime error
File size: 8,804 Bytes
35153f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import json
import logging
import deepspeed
from pathlib import Path
from open_clip.factory import load_state_dict, get_model_config
from open_clip.model import CLIPVisionCfg, CLIPTextCfg, _build_vision_tower, convert_to_custom_text_state_dict, resize_pos_embed
from typing import Dict, Optional
from transformers.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled
open_clip_config = {
"model_cfg": {
"embed_dim": 768,
"vision_cfg": {
"timm_model_name": "convnext_large",
"timm_model_pretrained": False,
"timm_pool": "",
"timm_proj": "mlp",
"timm_drop": 0.0,
"timm_drop_path": 0.1,
"image_size": 320
},
"text_cfg": {
"context_length": 77,
"vocab_size": 49408,
"width": 768,
"heads": 12,
"layers": 16
}
},
"preprocess_cfg": {
"mean": [
0.48145466,
0.4578275,
0.40821073
],
"std": [
0.26862954,
0.26130258,
0.27577711
]
}
}
# xxx
class OpenCLIPVisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.vision_tower_name = vision_tower
self.vision_config = open_clip_config
# json.load(open(os.path.join(vision_tower,'open_clip_config.json'), 'r'))
self.is_optimize = getattr(args, 'optimize_vision_tower_aux', False)
if not delay_load:
self.load_model()
def load_model(self):
# print(self.vision_tower_name)
ckpt_path = os.path.join(self.vision_tower_name, 'open_clip_pytorch_model.bin')
if 'convnext' in self.vision_tower_name:
if 'large' in self.vision_tower_name and 'd_320' in self.vision_tower_name:
self.model_type = 'convnext_large_d_320'
self.model_channel = [192, 384, 768, 1536] # stage 0-3
elif 'base' in self.vision_tower_name and 'w_320' in self.vision_tower_name:
self.model_type = 'convnext_base_w_320'
self.model_channel = [128, 256, 512, 1024]
elif 'xxlarge' in self.vision_tower_name:
self.model_type = 'convnext_xxlarge'
self.model_channel = [384, 768, 1536, 3072]
clip_model = CLIP(**get_model_config(self.model_type))
clip_model.visual.trunk.norm_pre = None
clip_model.visual.trunk.head = None
clip_model.visual.head = None
print(f'Loading pretrained weights ({self.model_type}).')
load_checkpoint(clip_model, ckpt_path, strict=False)
self.is_loaded = True
# decompose stem and stages blocks in vision tower
self.vision_stem = clip_model.visual.trunk.stem
self.vision_stages = clip_model.visual.trunk.stages
self.vision_stem.requires_grad_(False)
self.vision_stages.requires_grad_(False)
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_feature = self.backbone(image.to(device=self.device, dtype=self.dtype).unsqueeze(0))
image_features.append(image_feature)
else:
image_features = self.backbone(images.to(device=self.device, dtype=self.dtype))
return image_features
def backbone(self, images):
if not self.is_optimize:
with torch.no_grad():
results = self.basic_forward(images)
else:
results = self.basic_forward(images)
target_size = (results['stage_0'].shape[-2], results['stage_0'].shape[-1])
result_cat = []
for _stage in results:
if _stage == 'stage_0':
result_cat.append(results[_stage].contiguous())
else:
result_cat.append(F.interpolate(results[_stage].float().contiguous() ,
size=target_size,
mode='bilinear',
align_corners=False).to(dtype=results[_stage].dtype))
result_cat = torch.cat(result_cat, dim=1)
return result_cat.contiguous()
def basic_forward(self, images):
results = {}
x = self.vision_stem(images)
for _idx in range(len(self.vision_stages)):
x = self.vision_stages[_idx](x)
results[f'stage_{_idx}'] = x
return results
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_stem[0].weight.dtype
@property
def device(self):
return self.vision_stem[0].weight.device
@property
def config(self):
return self.vision_config
@property
def hidden_size(self):
return sum(self.model_channel)
# modified function from open_clip to support zero3 stage
def load_checkpoint(model, checkpoint_path, strict=True):
if Path(checkpoint_path).suffix in ('.npz', '.npy'):
from open_clip.big_vision import load_big_vision_weights
load_big_vision_weights(model, checkpoint_path)
return {}
state_dict = load_state_dict(checkpoint_path)
# detect old format and make compatible with new format
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
state_dict = convert_to_custom_text_state_dict(state_dict)
# If loading a non-SigLIP model for SigLIP training. See https://github.com/mlfoundations/open_clip/issues/712
# if 'logit_bias' not in state_dict and model.logit_bias is not None:
# state_dict["logit_bias"] = torch.zeros_like(state_dict["logit_scale"])
# Certain text transformers no longer expect position_ids after transformers==4.31
position_id_key = 'text.transformer.embeddings.position_ids'
if position_id_key in state_dict and not hasattr(model, position_id_key):
del state_dict[position_id_key]
resize_pos_embed(state_dict, model)
# resize_text_pos_embed(state_dict, model)
#incompatible_keys = model.load_state_dict(state_dict, strict=strict)
if is_deepspeed_zero3_enabled():
error_msgs = []
def load(module: nn.Module, state_dict, prefix=""):
metadata = None
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
# Parameters of module and children will start with prefix. We can exit early if there are none in this
# state_dict
if len([key for key in state_dict if key.startswith(prefix)]) > 0:
if is_deepspeed_zero3_enabled():
# In sharded models, each shard has only part of the full state_dict, so only gather
# parameters that are in the current state_dict.
named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters]
if len(params_to_gather) > 0:
# because zero3 puts placeholders in model params, this context
# manager gathers (unpartitions) the params of the current layer, then loads from
# the state dict and then re-partitions them again
with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
if torch.distributed.get_rank() == 0:
module._load_from_state_dict(*args)
else:
module._load_from_state_dict(*args)
for name, child in module._modules.items():
if child is not None:
load(child, state_dict, prefix + name + ".")
load(model, state_dict)
incompatible_keys = []
else:
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}")
return incompatible_keys
class CLIP(nn.Module):
output_dict: torch.jit.Final[bool]
def __init__(
self,
embed_dim: int,
vision_cfg: CLIPVisionCfg,
text_cfg: CLIPTextCfg,
quick_gelu: bool = False,
cast_dtype: Optional[torch.dtype] = None,
output_dict: bool = False,
):
super().__init__()
self.output_dict = output_dict
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|