File size: 17,679 Bytes
35153f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
"""
A model worker executes the model.
"""
import argparse
import asyncio
import json
import time
import threading
import uuid

from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import StreamingResponse
import requests
import torch
import uvicorn
from functools import partial

from minigemini.constants import WORKER_HEART_BEAT_INTERVAL
from minigemini.utils import (build_logger, server_error_msg,
    pretty_print_semaphore)
from minigemini.model.builder import load_pretrained_model
from minigemini.mm_utils import process_images, load_image_from_base64, tokenizer_image_token
from minigemini.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from transformers import TextIteratorStreamer
from threading import Thread
try:
    from diffusers import StableDiffusionXLPipeline
except:
    print('please install diffusers==0.26.3')

try:
    from paddleocr import PaddleOCR
except:
    print('please install paddleocr following https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.7/README_en.md')

import io
import base64

GB = 1 << 30

worker_id = str(uuid.uuid4())[:6]
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
global_counter = 0

model_semaphore = None


def heart_beat_worker(controller):

    while True:
        time.sleep(WORKER_HEART_BEAT_INTERVAL)
        controller.send_heart_beat()


class ModelWorker:
    def __init__(self, controller_addr, worker_addr,
                 worker_id, no_register,
                 model_path, model_base, model_name,
                 load_8bit, load_4bit, device, use_flash_attn=False):
        self.controller_addr = controller_addr
        self.worker_addr = worker_addr
        self.worker_id = worker_id
        if model_path.endswith("/"):
            model_path = model_path[:-1]
        if model_name is None:
            model_paths = model_path.split("/")
            if model_paths[-1].startswith('checkpoint-'):
                self.model_name = model_paths[-2] + "_" + model_paths[-1]
            else:
                self.model_name = model_paths[-1]
        else:
            self.model_name = model_name

        self.device = device
        logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...")
        self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model(
            model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device, use_flash_attn=use_flash_attn)
        # self.is_multimodal = 'llava' in self.model_name.lower()
        self.is_multimodal = True

        if hasattr(self.model.config, 'image_size_aux'):
            if not hasattr(self.image_processor, 'image_size_raw'):
                self.image_processor.image_size_raw = self.image_processor.crop_size.copy()
            self.image_processor.crop_size['height'] = self.model.config.image_size_aux
            self.image_processor.crop_size['width'] = self.model.config.image_size_aux
            self.image_processor.size['shortest_edge'] = self.model.config.image_size_aux

        # ocr model
        self.ocr_model = PaddleOCR(use_angle_cls=True, use_gpu=True, lang="ch")

        # diffusion model
        max_gpu_index = torch.cuda.device_count() - 1
        device_last = torch.device(f'cuda:{max_gpu_index}')
        print(torch.cuda.device_count(), '++++++', device_last)
        self.pipe = StableDiffusionXLPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
        ).to(device=device_last)

        if not no_register:
            self.register_to_controller()
            self.heart_beat_thread = threading.Thread(
                target=heart_beat_worker, args=(self,))
            self.heart_beat_thread.start()

    def register_to_controller(self):
        logger.info("Register to controller")

        url = self.controller_addr + "/register_worker"
        data = {
            "worker_name": self.worker_addr,
            "check_heart_beat": True,
            "worker_status": self.get_status()
        }
        r = requests.post(url, json=data)
        assert r.status_code == 200

    def send_heart_beat(self):
        logger.info(f"Send heart beat. Models: {[self.model_name]}. "
                    f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
                    f"global_counter: {global_counter}")

        url = self.controller_addr + "/receive_heart_beat"

        while True:
            try:
                ret = requests.post(url, json={
                    "worker_name": self.worker_addr,
                    "queue_length": self.get_queue_length()}, timeout=30)
                exist = ret.json()["exist"]
                break
            except requests.exceptions.RequestException as e:
                logger.error(f"heart beat error: {e}")
            time.sleep(5)

        if not exist:
            self.register_to_controller()

    def get_queue_length(self):
        if model_semaphore is None:
            return 0
        else:
            return args.limit_model_concurrency - model_semaphore._value + (len(
                model_semaphore._waiters) if model_semaphore._waiters is not None else 0)

    def get_status(self):
        return {
            "model_names": [self.model_name],
            "speed": 1,
            "queue_length": self.get_queue_length(),
        }
    
    def add_content(self, prompt, new_content):
        if '[INST]' in prompt:
            split_index = prompt.rfind(' [/INST]')
        elif '<|im_end|>' in prompt:
            split_index = prompt.rfind('<|im_end|>')
        else:
            split_index = prompt.rfind('###Assistant:')
        left_prompt = prompt[:split_index]
        right_prompt = prompt[split_index:]
        prompt = left_prompt + new_content + right_prompt
        return prompt

    @torch.inference_mode()
    def generate_stream(self, params):
        tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor
        prompt = params["prompt"]
        ori_prompt = prompt
        images = params.get("images", None)
        gen_image = params.get("gen_image", False)
        use_ocr = params.get("use_ocr", False)
        num_image_tokens = 0

        if gen_image:
            prompt = self.add_content(prompt, ' <GEN>')
        print(prompt)

        if images is not None and len(images) > 0 and self.is_multimodal:  # len(images) = 1
            if len(images) > 0:
                if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
                    raise ValueError("Number of images does not match number of <image> tokens in prompt")

                images = [load_image_from_base64(image) for image in images]

                # add OCR tokens
                if use_ocr:
                    str_in_image = ''
                    for image in images:
                        img_byte_arr = io.BytesIO()
                        image.save(img_byte_arr, format=image.format)
                        img_byte_arr = img_byte_arr.getvalue()
                        result = self.ocr_model.ocr(img_byte_arr, cls=True) 
                        
                        if result[0] is not None:
                            result = [res[1][0] for res in result[0] if res[1][1] > 0.1]
                            if len(result) > 0:
                                str_in_image += ', '.join(result)
                    # print('OCR Token: ' + str_in_image)
                    if len(str_in_image) > 0:
                        prompt = self.add_content(prompt, '\nReference OCR Token: ' + str_in_image + '\n')

                image_tensor = process_images(images, image_processor, model.config)

                image_grid = getattr(model.config, 'image_grid', 1)
                if hasattr(model.config, 'image_size_aux'):
                    raw_shape = [image_processor.image_size_raw['height'] * image_grid,
                                 image_processor.image_size_raw['width'] * image_grid]
                    image_tensor_aux = image_tensor 
                    image_tensor = torch.nn.functional.interpolate(image_tensor,
                                                                   size=raw_shape,
                                                                   mode='bilinear',
                                                                   align_corners=False) # # torch.Size([1, 3, 336, 336])
                else:
                    image_tensor_aux = []

                if image_grid >= 2:            
                    raw_image = image_tensor.reshape(3, 
                                                    image_grid,
                                                    image_processor.image_size_raw['height'],
                                                    image_grid,
                                                    image_processor.image_size_raw['width'])
                    raw_image = raw_image.permute(1, 3, 0, 2, 4)
                    raw_image = raw_image.reshape(-1, 3,
                                                image_processor.image_size_raw['height'],
                                                image_processor.image_size_raw['width'])
                
                    if getattr(model.config, 'image_global', False):
                        global_image = image_tensor
                        if len(global_image.shape) == 3:
                            global_image = global_image[None]
                        global_image = torch.nn.functional.interpolate(global_image, 
                                                                size=[image_processor.image_size_raw['height'],
                                                                    image_processor.image_size_raw['width']], 
                                                                mode='bilinear', 
                                                                align_corners=False)
                        # [image_crops, image_global]
                        raw_image = torch.cat([raw_image, global_image], dim=0)
                    image_tensor = raw_image.contiguous()

                image_tensor = image_tensor.to(self.model.device, dtype=torch.float16).unsqueeze(0)
                image_tensor_aux = image_tensor_aux.to(self.model.device, dtype=torch.float16)

                replace_token = DEFAULT_IMAGE_TOKEN
                if getattr(self.model.config, 'mm_use_im_start_end', False):
                    replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
                prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)

                num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches
            else:
                image_tensor = None
            image_args = {"images": image_tensor, "images_aux": image_tensor_aux}
        else:
            image_tensor = None
            image_args = {}

        temperature = float(params.get("temperature", 1.0))
        top_p = float(params.get("top_p", 1.0))
        max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
        max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
        stop_str = params.get("stop", None)
        do_sample = True if temperature > 0.001 else False

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
        streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=30)

        max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)

        if max_new_tokens < 1:
            yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
            return

        thread = Thread(target=model.generate, kwargs=dict(
            inputs=input_ids,
            do_sample=do_sample,
            temperature=temperature,
            top_p=top_p,
            max_new_tokens=max_new_tokens,
            streamer=streamer,
            use_cache=True,
            **image_args
        ))
        thread.start()

        generated_text = ori_prompt
        for new_text in streamer:
            generated_text += new_text
            if generated_text.endswith(stop_str):
                generated_text = generated_text[:-len(stop_str)]
            yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0"
        torch.cuda.empty_cache()

        if gen_image and "<h>" in generated_text and "</h>" in generated_text:
            # common_neg_prompt = "blur, lowres, bad anatomy, bad hands, cropped, worst quality"
            common_neg_prompt = "out of frame, lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"
            prompt = generated_text.split("<h>")[1].split("</h>")[0]
            # yield json.dumps({"text": prompt, "error_code": 0}).encode() + b"\0"

            output_img = self.pipe(prompt, negative_prompt=common_neg_prompt).images[0]
            buffered = io.BytesIO()
            output_img.save(buffered, format='JPEG')
            img_b64_str = base64.b64encode(buffered.getvalue()).decode()
            torch.cuda.empty_cache()

            generated_text = generated_text.split("<h>")[0] + '\n' + 'Prompt: ' + prompt + '\n'
            yield json.dumps({"text": generated_text, "image": img_b64_str, "error_code": 0}).encode() + b"\0"

    def generate_stream_gate(self, params):
        try:
            for x in self.generate_stream(params):
                yield x
        except ValueError as e:
            print("Caught ValueError:", e)
            ret = {
                "text": server_error_msg,
                "error_code": 1,
            }
            yield json.dumps(ret).encode() + b"\0"
        except torch.cuda.CudaError as e:
            print("Caught torch.cuda.CudaError:", e)
            ret = {
                "text": server_error_msg,
                "error_code": 1,
            }
            yield json.dumps(ret).encode() + b"\0"
        except Exception as e:
            print("Caught Unknown Error", e)
            ret = {
                "text": server_error_msg,
                "error_code": 1,
            }
            yield json.dumps(ret).encode() + b"\0"


app = FastAPI()


def release_model_semaphore(fn=None):
    model_semaphore.release()
    if fn is not None:
        fn()


@app.post("/worker_generate_stream")
async def generate_stream(request: Request):
    global model_semaphore, global_counter
    global_counter += 1
    params = await request.json()
    if model_semaphore is None:
        model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
    await model_semaphore.acquire()
    worker.send_heart_beat()
    generator = worker.generate_stream_gate(params)
    background_tasks = BackgroundTasks()
    background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat))
    return StreamingResponse(generator, background=background_tasks)


@app.post("/worker_get_status")
async def get_status(request: Request):
    return worker.get_status()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="localhost")
    parser.add_argument("--port", type=int, default=21002)
    parser.add_argument("--worker-address", type=str,
        default="http://localhost:21002")
    parser.add_argument("--controller-address", type=str,
        default="http://localhost:21001")
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--model-name", type=str)
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
    parser.add_argument("--limit-model-concurrency", type=int, default=5)
    parser.add_argument("--stream-interval", type=int, default=1)
    parser.add_argument("--no-register", action="store_true")
    parser.add_argument("--load-8bit", action="store_true")
    parser.add_argument("--load-4bit", action="store_true")
    parser.add_argument("--use-flash-attn", action="store_true")
    args = parser.parse_args()
    logger.info(f"args: {args}")

    if args.multi_modal:
        logger.warning("Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")

    worker = ModelWorker(args.controller_address,
                         args.worker_address,
                         worker_id,
                         args.no_register,
                         args.model_path,
                         args.model_base,
                         args.model_name,
                         args.load_8bit,
                         args.load_4bit,
                         args.device,
                         use_flash_attn=args.use_flash_attn)
    uvicorn.run(app, host=args.host, port=args.port, log_level="info")