wdndev's picture
app
f0f7502
raw
history blame
3.43 kB
import json
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
st.set_page_config(page_title="Tiny LLM 92M Demo")
st.title("Tiny LLM 92M Demo")
model_id = "./tiny_llm_sft_92m"
@st.cache_resource
def load_model_tokenizer():
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
use_fast=False,
trust_remote_code=True
)
generation_config = GenerationConfig.from_pretrained(model_id)
return model, tokenizer, generation_config
def clear_chat_messages():
del st.session_state.messages
def init_chat_messages():
with st.chat_message("assistant", avatar='🤖'):
st.markdown("您好,我是由wdndev开发的个人助手,很高兴为您服务😄")
if "messages" in st.session_state:
for message in st.session_state.messages:
avatar = "🧑‍💻" if message["role"] == "user" else "🤖"
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
else:
st.session_state.messages = []
return st.session_state.messages
max_new_tokens = st.sidebar.slider("max_new_tokens", 0, 1024, 512, step=1)
top_p = st.sidebar.slider("top_p", 0.0, 1.0, 0.8, step=0.01)
top_k = st.sidebar.slider("top_k", 0, 100, 0, step=1)
temperature = st.sidebar.slider("temperature", 0.0, 2.0, 1.0, step=0.01)
do_sample = st.sidebar.checkbox("do_sample", value=False)
def main():
model, tokenizer, generation_config = load_model_tokenizer()
messages = init_chat_messages()
if prompt := st.chat_input("Shift + Enter 换行, Enter 发送"):
with st.chat_message("user", avatar='🧑‍💻'):
st.markdown(prompt)
with st.chat_message("assistant", avatar='🤖'):
placeholder = st.empty()
generation_config.max_new_tokens = max_new_tokens
generation_config.top_p = top_p
generation_config.top_k = top_k
generation_config.temperature = temperature
generation_config.do_sample = do_sample
print("generation_config: ", generation_config)
sys_text = "你是由wdndev开发的个人助手。"
messages.append({"role": "user", "content": prompt})
user_text = prompt
input_txt = "\n".join(["<|system|>", sys_text.strip(),
"<|user|>", user_text.strip(),
"<|assistant|>"]).strip() + "\n"
model_inputs = tokenizer(input_txt, return_tensors="pt").to(model.device)
generated_ids = model.generate(model_inputs.input_ids, generation_config=generation_config)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
placeholder.markdown(response)
messages.append({"role": "assistant", "content": response})
print("messages: ", json.dumps(response, ensure_ascii=False), flush=True)
st.button("清空对话", on_click=clear_chat_messages)
if __name__ == "__main__":
main()