import json import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation.utils import GenerationConfig st.set_page_config(page_title="Tiny LLM 92M Demo") st.title("Tiny LLM 92M Demo") model_id = "./tiny_llm_sft_92m" @st.cache_resource def load_model_tokenizer(): model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=False, trust_remote_code=True ) generation_config = GenerationConfig.from_pretrained(model_id) return model, tokenizer, generation_config def clear_chat_messages(): del st.session_state.messages def init_chat_messages(): with st.chat_message("assistant", avatar='🤖'): st.markdown("您好,我是由wdndev开发的个人助手,很高兴为您服务😄") if "messages" in st.session_state: for message in st.session_state.messages: avatar = "🧑‍💻" if message["role"] == "user" else "🤖" with st.chat_message(message["role"], avatar=avatar): st.markdown(message["content"]) else: st.session_state.messages = [] return st.session_state.messages max_new_tokens = st.sidebar.slider("max_new_tokens", 0, 1024, 512, step=1) top_p = st.sidebar.slider("top_p", 0.0, 1.0, 0.8, step=0.01) top_k = st.sidebar.slider("top_k", 0, 100, 0, step=1) temperature = st.sidebar.slider("temperature", 0.0, 2.0, 1.0, step=0.01) do_sample = st.sidebar.checkbox("do_sample", value=False) def main(): model, tokenizer, generation_config = load_model_tokenizer() messages = init_chat_messages() if prompt := st.chat_input("Shift + Enter 换行, Enter 发送"): with st.chat_message("user", avatar='🧑‍💻'): st.markdown(prompt) with st.chat_message("assistant", avatar='🤖'): placeholder = st.empty() generation_config.max_new_tokens = max_new_tokens generation_config.top_p = top_p generation_config.top_k = top_k generation_config.temperature = temperature generation_config.do_sample = do_sample print("generation_config: ", generation_config) sys_text = "你是由wdndev开发的个人助手。" messages.append({"role": "user", "content": prompt}) user_text = prompt input_txt = "\n".join(["<|system|>", sys_text.strip(), "<|user|>", user_text.strip(), "<|assistant|>"]).strip() + "\n" model_inputs = tokenizer(input_txt, return_tensors="pt").to(model.device) generated_ids = model.generate(model_inputs.input_ids, generation_config=generation_config) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] placeholder.markdown(response) messages.append({"role": "assistant", "content": response}) print("messages: ", json.dumps(response, ensure_ascii=False), flush=True) st.button("清空对话", on_click=clear_chat_messages) if __name__ == "__main__": main()