File size: 1,324 Bytes
8f8ddfc
 
 
dd65b38
 
 
a40070e
8f8ddfc
a40070e
 
 
 
8f8ddfc
 
a40070e
8f8ddfc
dd65b38
a40070e
 
 
 
 
dd65b38
 
a40070e
dd65b38
 
a40070e
dd65b38
a40070e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import streamlit as st
from PIL import Image
import numpy as np
import pubchempy as pcp
from rdkit import Chem
from rdkit.Chem import Draw
import time

st.title("3D2SMILES")
col1, col2 = st.columns(2)
gen_strategy = col1.selectbox("Select a generative strategy", ("Beam Search", "Sampling", "Greedy Search"))
model = col2.selectbox("Select a model", ("V1", "V2"))
uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
if uploaded_file:
    start_time = time.time()
    image = Image.open(uploaded_file)

    options = ["CC(=O)OC1=CC=CC=C1C(=C)C(=O)O", "CC(=O)", "CC(=O)O", "CC(=O)C", "CC(=O)C1=CC=CC=C1"]
    grid = [st.columns(2) for _ in range(len(options) // 3 + 1)]
    cols = [col for row in grid for col in row]

    for i, (smiles, col) in enumerate(zip(options, cols)):
        cid = pcp.get_compounds(smiles, 'smiles')
        name = cid[0].synonyms[0]
        col.markdown("## Option {}: {}".format(i + 1, name))
        m = Chem.MolFromSmiles(smiles)
        img = Draw.MolToImage(m)
        col.image(img, use_container_width=False)
        pubchem_url = "https://pubchem.ncbi.nlm.nih.gov/compound/{}".format(cid[0].cid)
        col.markdown("[PubChem Link]({})".format(pubchem_url))
    st.markdown("---")
    st.markdown("Taken {} seconds".format(round(time.time() - start_time, 2)))