File size: 1,324 Bytes
8f8ddfc dd65b38 a40070e 8f8ddfc a40070e 8f8ddfc a40070e 8f8ddfc dd65b38 a40070e dd65b38 a40070e dd65b38 a40070e dd65b38 a40070e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import streamlit as st
from PIL import Image
import numpy as np
import pubchempy as pcp
from rdkit import Chem
from rdkit.Chem import Draw
import time
st.title("3D2SMILES")
col1, col2 = st.columns(2)
gen_strategy = col1.selectbox("Select a generative strategy", ("Beam Search", "Sampling", "Greedy Search"))
model = col2.selectbox("Select a model", ("V1", "V2"))
uploaded_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
if uploaded_file:
start_time = time.time()
image = Image.open(uploaded_file)
options = ["CC(=O)OC1=CC=CC=C1C(=C)C(=O)O", "CC(=O)", "CC(=O)O", "CC(=O)C", "CC(=O)C1=CC=CC=C1"]
grid = [st.columns(2) for _ in range(len(options) // 3 + 1)]
cols = [col for row in grid for col in row]
for i, (smiles, col) in enumerate(zip(options, cols)):
cid = pcp.get_compounds(smiles, 'smiles')
name = cid[0].synonyms[0]
col.markdown("## Option {}: {}".format(i + 1, name))
m = Chem.MolFromSmiles(smiles)
img = Draw.MolToImage(m)
col.image(img, use_container_width=False)
pubchem_url = "https://pubchem.ncbi.nlm.nih.gov/compound/{}".format(cid[0].cid)
col.markdown("[PubChem Link]({})".format(pubchem_url))
st.markdown("---")
st.markdown("Taken {} seconds".format(round(time.time() - start_time, 2))) |