Spaces:
Running
Running
File size: 16,227 Bytes
eccf3fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
import { env, AutoTokenizer } from '../../transformers/transformers.js';
import * as ort from './dist/esm/ort.webgpu.min.js'
//await loadOrt();
const clipboardIcon = `<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-clipboard" viewBox="0 0 16 16">
<path d="M4 1.5H3a2 2 0 0 0-2 2V14a2 2 0 0 0 2 2h10a2 2 0 0 0 2-2V3.5a2 2 0 0 0-2-2h-1v1h1a1 1 0 0 1 1 1V14a1 1 0 0 1-1 1H3a1 1 0 0 1-1-1V3.5a1 1 0 0 1 1-1h1v-1z"/>
<path d="M9.5 1a.5.5 0 0 1 .5.5v1a.5.5 0 0 1-.5.5h-3a.5.5 0 0 1-.5-.5v-1a.5.5 0 0 1 .5-.5h3zm-3-1A1.5 1.5 0 0 0 5 1.5v1A1.5 1.5 0 0 0 6.5 4h3A1.5 1.5 0 0 0 11 2.5v-1A1.5 1.5 0 0 0 9.5 0h-3z"/>
</svg>`
marked.use({
mangle: false,
headerIds: false
});
function log(i) { console.log(i); document.getElementById('status').innerText += `\n${i}`; }
const sendButton = document.getElementById('send-button');
// adjusts the padding at the bottom of scrollWrapper to be the height of the input box
function adjustPadding() {
const inputBoxHeight = document.getElementById('input-area').offsetHeight;
const scrollWrapper = document.getElementById('scroll-wrapper');
scrollWrapper.style.paddingBottom = `${inputBoxHeight + 15}px`;
}
// sets up padding resize whenever input box has its height changed
const autoResizePadding = new ResizeObserver(() => {
adjustPadding();
});
autoResizePadding.observe(document.getElementById('input-area'));
// variables to handle auto-scroll
// we only need one ResizeObserver and isAutoScrollOn variable globally
// no need to make a new one for every time submitRequest is called
const scrollWrapper = document.getElementById('scroll-wrapper');
let isAutoScrollOn = true;
// autoscroll when new line is added
const autoScroller = new ResizeObserver(() => {
if (isAutoScrollOn) {
scrollWrapper.scrollIntoView({ behavior: "smooth", block: "end" });
}
});
// event listener for scrolling
let lastKnownScrollPosition = 0;
let ticking = false;
document.addEventListener("scroll", (event) => {
// if user has scrolled up and autoScroll is on we turn it off
if (!ticking && isAutoScrollOn && window.scrollY < lastKnownScrollPosition) {
window.requestAnimationFrame(() => {
isAutoScrollOn = false;
ticking = false;
});
ticking = true;
}
// if user has scrolled nearly all the way down and autoScroll is disabled, re-enable
else if (!ticking && !isAutoScrollOn &&
window.scrollY > lastKnownScrollPosition && // make sure scroll direction is down
window.scrollY >= document.documentElement.scrollHeight - window.innerHeight - 30 // add 30px of space--no need to scroll all the way down, just most of the way
) {
window.requestAnimationFrame(() => {
isAutoScrollOn = true;
ticking = false;
});
ticking = true;
}
lastKnownScrollPosition = window.scrollY;
});
function copyTextToClipboard(responseDiv, with_button) {
let elem = responseDiv;
if (with_button) {
let copyButton = document.createElement('button');
copyButton.className = 'btn btn-secondary copy-button';
copyButton.innerHTML = clipboardIcon;
elem = copyButton;
}
elem.onclick = () => {
let text = responseDiv.hidden_text;
if (!text) {
text = responseDiv.innerText;
}
navigator.clipboard.writeText(text).then(() => {
console.log('Text copied to clipboard');
}).catch(err => {
console.error('Failed to copy text:', err);
});
};
if (with_button) {
responseDiv.appendChild(elem);
}
}
// Function to handle the user input and call the API functions
async function submitRequest() {
if (sendButton.innerHTML == "Stop") {
llm.abort();
return;
}
document.getElementById('chat-container').style.display = 'block';
const input = document.getElementById('user-input').value;
if (input.length == 0) {
document.getElementById('chat-history').context = "";
let chatHistory = document.getElementById('chat-history');
while (chatHistory.firstChild) {
chatHistory.firstChild.remove();
}
return;
}
let context = document.getElementById('chat-history').context;
if (context === undefined) {
context = "";
}
// Create user message element and append to chat history
let chatHistory = document.getElementById('chat-history');
let userMessageDiv = document.createElement('div');
userMessageDiv.className = 'mb-2 user-message';
userMessageDiv.innerText = input;
chatHistory.appendChild(userMessageDiv);
copyTextToClipboard(userMessageDiv);
// Create response container
let responseDiv = document.createElement('div');
responseDiv.className = 'response-message mb-2 text-start';
responseDiv.style.minHeight = '3em'; // make sure div does not shrink if we cancel the request when no text has been generated yet
let spinner = document.createElement('div');
spinner.className = 'spinner-border text-light';
spinner.setAttribute('role', 'status');
responseDiv.appendChild(spinner);
chatHistory.appendChild(responseDiv);
// create button to stop text generation
sendButton.innerHTML = "Stop";
// change autoScroller to keep track of our new responseDiv
autoScroller.observe(responseDiv);
Query(input, (word) => {
// add word to response
responseDiv.innerHTML = DOMPurify.sanitize(marked.parse(word)); // Append word to response container
}).then(() => {
chatHistory.context = responseDiv.innerHTML;
copyTextToClipboard(responseDiv, true);
sendButton.innerHTML = "Send";
spinner.remove();
}).catch(error => {
if (error !== 'Stop button pressed') {
console.error(error);
}
sendButton.innerHTML = "Send";
spinner.remove();
});
// Clear user input
document.getElementById('user-input').value = '';
}
const preCannedQueries = {
"1": "Tell me about the lighthouse of Alexandria.",
"2": "Did the lighthouse of Alexandria existed at the same time the library of Alexandria existed?",
"3": "How did the Pharos lighthouse impact ancient maritime trade?",
"4": "Tell me about Constantinople?",
};
// Event listener for Ctrl + Enter or CMD + Enter
document.getElementById('user-input').addEventListener('keydown', function (e) {
if (e.ctrlKey) {
if (e.key === 'Enter') {
submitRequest();
} else {
const query = preCannedQueries[e.key];
if (query) {
document.getElementById('user-input').value = query;
submitRequest();
}
}
}
});
const MODELS = {
"tinyllama": { name: "tinyllama", path: "schmuell/TinyLlama-1.1B-Chat-v1.0-int4" },
"tinyllama_fp16": { name: "tinyllama-fp16", path: "schmuell/TinyLlama-1.1B-Chat-v1.0-fp16", externaldata: true },
"phi2": { name: "phi2", path: "schmuell/phi2-int4" },
"phi3": { name: "phi3", path: "schmuell/phi3-int4", externaldata: true },
"stablelm": { name: "stablelm", path: "schmuell/stablelm-2-zephyr-1_6b-int4" },
}
function getConfig() {
const query = window.location.search.substring(1);
var config = {
model: "phi3",
provider: "webgpu",
profiler: 0,
verbose: 0,
threads: 1,
csv: 0,
max_tokens: 512,
local: 0,
}
let vars = query.split("&");
for (var i = 0; i < vars.length; i++) {
let pair = vars[i].split("=");
if (pair[0] in config) {
const key = pair[0];
const value = decodeURIComponent(pair[1]);
if (typeof config[key] == "number") {
config[key] = parseInt(value);
}
else {
config[key] = value;
}
} else if (pair[0].length > 0) {
throw new Error("unknown argument: " + pair[0]);
}
}
if (MODELS[config.model] !== undefined) {
config.model = MODELS[config.model];
}
return config;
}
async function fetchAndCache(url) {
try {
const cache = await caches.open("onnx");
let cachedResponse = await cache.match(url);
if (cachedResponse == undefined) {
await cache.add(url);
cachedResponse = await cache.match(url);
log(`${url} (network)`);
} else {
log(`${url} (cached)`);
}
const data = await cachedResponse.arrayBuffer();
return data;
} catch (error) {
log(`${url} (network)`);
return await fetch(url).then(response => response.arrayBuffer());
}
}
class LLM {
sess = undefined;
profiler = false;
feed = {};
output_tokens = [];
eos = 2;
need_position_ids = true;
stop = false;
kv_dims = [];
dtype = "float16";
max_tokens = 256;
constructor() {
}
async load(model, options) {
const provider = options.provider || "webgpu";
const verbose = options.verbose;
const local = options.local;
this.profiler = options.profiler;
const model_path = (local) ? "models/" + model.path : "https://huggingface.co/" + model.path + "/resolve/main";
log(`loading... ${model.name}, ${provider}`);
const json_bytes = await fetchAndCache(model_path + "/config.json");
let textDecoder = new TextDecoder();
const model_config = JSON.parse(textDecoder.decode(json_bytes));
const model_bytes = await fetchAndCache(model_path + "/onnx/decoder_model_merged.onnx");
const externaldata = (model.externaldata) ? await fetchAndCache(model_path + '/onnx/decoder_model_merged.onnx.data') : false;
let modelSize = model_bytes.byteLength;
if (externaldata) {
modelSize += externaldata.byteLength;
}
log(`model size ${Math.round(modelSize / 1024 / 1024)} MB`);
const opt = {
executionProviders: [provider],
preferredOutputLocation: {},
}
switch (provider) {
case "webgpu":
if (!("gpu" in navigator)) {
throw new Error("webgpu is NOT supported");
}
for (let i = 0; i < model_config.num_hidden_layers; ++i) {
opt.preferredOutputLocation[`present.${i}.key`] = 'gpu-buffer';
opt.preferredOutputLocation[`present.${i}.value`] = 'gpu-buffer';
}
break;
}
if (externaldata !== undefined) {
opt.externalData = [
{
data: externaldata,
path: 'decoder_model_merged.onnx.data'
},
]
}
if (verbose) {
opt.logSeverityLevel = 0;
opt.logVerbosityLevel = 0;
ort.env.logLevel = "verbose";
}
ort.env.webgpu.profiling = {}
if (this.profiler) {
opt.enableProfiling = true;
ort.env.webgpu.profilingMode = 'default';
ort.env.webgpu.profiling.mode = 'default';
}
this.sess = await ort.InferenceSession.create(model_bytes, opt);
this.eos = model_config.eos_token_id;
this.kv_dims = [1, model_config.num_key_value_heads, 0, model_config.hidden_size / model_config.num_attention_heads];
this.dtype = config.model.dtype || "float16";
this.num_layers = model_config.num_hidden_layers;
this.initilize_feed();
}
initilize_feed() {
this.feed = {};
const empty = (this.dtype === "float16") ? new Uint16Array() : [];
for (let i = 0; i < this.num_layers; ++i) {
this.feed[`past_key_values.${i}.key`] = new ort.Tensor(this.dtype, empty, this.kv_dims)
this.feed[`past_key_values.${i}.value`] = new ort.Tensor(this.dtype, empty, this.kv_dims)
}
this.output_tokens = [];
}
argmax(t) {
const arr = t.data;
const start = t.dims[2] * (t.dims[1] - 1);
let max = arr[start];
let maxidx = 0;
for (let i = 0; i < t.dims[2]; i++) {
const val = arr[i + start];
if (!isFinite(val)) {
throw new Error("found infinitive in logits");
}
if (val > max) {
max = arr[i + start];
maxidx = i;
}
}
return maxidx;
}
update_kv_cache(feed, outputs) {
for (const name in outputs) {
if (name.startsWith('present')) {
let newName = name.replace('present', 'past_key_values');
// free old gpu buffer
const t = feed[newName];
if (t.location === 'gpu-buffer') {
t.dispose();
}
feed[newName] = outputs[name];
}
}
}
abort() {
this.stop = true;
}
async generate(tokens, callback, options) {
const keep_cache = options.keep_cache;
const max_tokens = options.max_tokens || 256;
const feed = this.feed;
const input_ids = new ort.Tensor('int64', BigInt64Array.from(tokens.map(BigInt)), [1, tokens.length]);
feed['input_ids'] = input_ids;
this.stop = false;
if (keep_cache) {
this.output_tokens.push(...input_ids)
} else {
this.initilize_feed();
this.output_tokens = Array.from(feed['input_ids'].data);
}
let last_token = 0n;
let seqlen = this.output_tokens.length;
if (this.need_position_ids) {
if (keep_cache) {
feed['position_ids'] = new ort.Tensor('int64', BigInt64Array.from({ length: seqlen }, (_, i) => BigInt(i)), [1, input_ids.length]);
} else {
feed['position_ids'] = new ort.Tensor('int64', BigInt64Array.from({ length: seqlen }, (_, i) => BigInt(i)), [1, seqlen]);
}
}
while (last_token != this.eos && seqlen < max_tokens && !this.stop) {
seqlen = this.output_tokens.length;
feed['attention_mask'] = new ort.Tensor('int64', BigInt64Array.from({ length: seqlen }, () => 1n), [1, seqlen]);
const outputs = await this.sess.run(feed);
last_token = BigInt(this.argmax(outputs.logits));
this.output_tokens.push(last_token);
if (callback && !this.profiler) {
callback(this.output_tokens);
}
this.update_kv_cache(feed, outputs);
feed['input_ids'] = new ort.Tensor('int64', BigInt64Array.from([last_token]), [1, 1]);
if (this.need_position_ids) {
feed['position_ids'] = new ort.Tensor('int64', BigInt64Array.from([BigInt(seqlen)]), [1, 1]);
}
}
if (this.profiler) {
this.sess.endProfiling();
}
return this.output_tokens;
}
}
const config = getConfig();
let tokenizer;
env.localModelPath = 'models';
env.allowRemoteModels = config.local == 0;
env.allowLocalModels = config.local == 1;
ort.env.wasm.numThreads = config.threads;
ort.env.wasm.simd = true;
ort.env.wasm.wasmPaths = document.location.pathname.replace('index.html', '') + 'dist/';
const llm = new LLM();
function token_to_text(tokenizer, tokens, startidx) {
const txt = tokenizer.decode(tokens.slice(startidx), { skip_special_tokens: true, });
return txt;
}
async function Query(query, cb) {
let prompt;
if (config.model.name == 'phi2') {
prompt = `User:${query}\nAssistant:`;
} else if (config.model.name == 'phix') {
prompt = query;
} else {
prompt = `"<|system|>\nYou are a friendly assistant.</s>\n<|user|>\n${query}</s>\n<|assistant|>\n`;
}
const { input_ids } = await tokenizer(prompt, { return_tensor: false, padding: true, truncation: true });
const start_timer = performance.now();
const output_tokens = await llm.generate(input_ids, (output_tokens) => {
cb(token_to_text(tokenizer, output_tokens, input_ids.length));
}, {max_tokens: config.max_tokens});
const took = (performance.now() - start_timer) / 1000;
const txt = token_to_text(tokenizer, output_tokens, input_ids.length);
cb(txt);
const seqlen = output_tokens.length;
const perf = `${seqlen} tokens in ${took.toFixed(1)}sec, ${(seqlen / took).toFixed(2)} tokens/sec`;
console.log(perf);
}
async function LoadModel() {
try {
tokenizer = await AutoTokenizer.from_pretrained(config.model.path);
log("Loading model...");
await llm.load(config.model, {
provider: config.provider,
profiler: config.profiler,
verbose: config.verbose,
local: config.local,
max_tokens: config.max_tokens,
});
log("Ready.");
} catch (error) {
log(error);
}
}
async function hasFp16() {
try {
const adapter = await navigator.gpu.requestAdapter()
return adapter.features.has('shader-f16')
} catch (e) {
return false
}
}
window.onload = () => {
hasFp16().then((fp16) => {
if (fp16) {
LoadModel().then(() => {
adjustPadding();
sendButton.addEventListener('click', submitRequest);
const userInput = document.getElementById('user-input');
document.getElementById("status").style.display = "none";
userInput.focus();
});
} else {
log("Your GPU or Browser doesn't support webgpu/f16");
}
});
}
|