File size: 16,227 Bytes
eccf3fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import { env, AutoTokenizer } from '../../transformers/transformers.js';
import * as ort from './dist/esm/ort.webgpu.min.js'
//await loadOrt();

const clipboardIcon = `<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-clipboard" viewBox="0 0 16 16">
<path d="M4 1.5H3a2 2 0 0 0-2 2V14a2 2 0 0 0 2 2h10a2 2 0 0 0 2-2V3.5a2 2 0 0 0-2-2h-1v1h1a1 1 0 0 1 1 1V14a1 1 0 0 1-1 1H3a1 1 0 0 1-1-1V3.5a1 1 0 0 1 1-1h1v-1z"/>
<path d="M9.5 1a.5.5 0 0 1 .5.5v1a.5.5 0 0 1-.5.5h-3a.5.5 0 0 1-.5-.5v-1a.5.5 0 0 1 .5-.5h3zm-3-1A1.5 1.5 0 0 0 5 1.5v1A1.5 1.5 0 0 0 6.5 4h3A1.5 1.5 0 0 0 11 2.5v-1A1.5 1.5 0 0 0 9.5 0h-3z"/>
</svg>`

marked.use({
  mangle: false,
  headerIds: false
});

function log(i) { console.log(i); document.getElementById('status').innerText += `\n${i}`; }

const sendButton = document.getElementById('send-button');

// adjusts the padding at the bottom of scrollWrapper to be the height of the input box
function adjustPadding() {
  const inputBoxHeight = document.getElementById('input-area').offsetHeight;
  const scrollWrapper = document.getElementById('scroll-wrapper');
  scrollWrapper.style.paddingBottom = `${inputBoxHeight + 15}px`;
}

// sets up padding resize whenever input box has its height changed
const autoResizePadding = new ResizeObserver(() => {
  adjustPadding();
});
autoResizePadding.observe(document.getElementById('input-area'));

// variables to handle auto-scroll
// we only need one ResizeObserver and isAutoScrollOn variable globally
// no need to make a new one for every time submitRequest is called
const scrollWrapper = document.getElementById('scroll-wrapper');
let isAutoScrollOn = true;
// autoscroll when new line is added
const autoScroller = new ResizeObserver(() => {
  if (isAutoScrollOn) {
    scrollWrapper.scrollIntoView({ behavior: "smooth", block: "end" });
  }
});

// event listener for scrolling
let lastKnownScrollPosition = 0;
let ticking = false;
document.addEventListener("scroll", (event) => {
  // if user has scrolled up and autoScroll is on we turn it off
  if (!ticking && isAutoScrollOn && window.scrollY < lastKnownScrollPosition) {
    window.requestAnimationFrame(() => {
      isAutoScrollOn = false;
      ticking = false;
    });
    ticking = true;
  }
  // if user has scrolled nearly all the way down and autoScroll is disabled, re-enable
  else if (!ticking && !isAutoScrollOn &&
    window.scrollY > lastKnownScrollPosition && // make sure scroll direction is down
    window.scrollY >= document.documentElement.scrollHeight - window.innerHeight - 30 // add 30px of space--no need to scroll all the way down, just most of the way
  ) {
    window.requestAnimationFrame(() => {
      isAutoScrollOn = true;
      ticking = false;
    });
    ticking = true;
  }
  lastKnownScrollPosition = window.scrollY;
});


function copyTextToClipboard(responseDiv, with_button) {
  let elem = responseDiv;
  if (with_button) {
    let copyButton = document.createElement('button');
    copyButton.className = 'btn btn-secondary copy-button';
    copyButton.innerHTML = clipboardIcon;
    elem = copyButton;
  }

  elem.onclick = () => {
    let text = responseDiv.hidden_text;
    if (!text) {
      text = responseDiv.innerText;
    }
    navigator.clipboard.writeText(text).then(() => {
      console.log('Text copied to clipboard');
    }).catch(err => {
      console.error('Failed to copy text:', err);
    });
  };
  if (with_button) {
    responseDiv.appendChild(elem);
  }
}

// Function to handle the user input and call the API functions
async function submitRequest() {
  if (sendButton.innerHTML == "Stop") {
    llm.abort();
    return;
  }

  document.getElementById('chat-container').style.display = 'block';

  const input = document.getElementById('user-input').value;
  if (input.length == 0) {
    document.getElementById('chat-history').context = "";
    let chatHistory = document.getElementById('chat-history');
    while (chatHistory.firstChild) {
      chatHistory.firstChild.remove();
    }
    return;
  }
  let context = document.getElementById('chat-history').context;
  if (context === undefined) {
    context = "";
  }
  // Create user message element and append to chat history
  let chatHistory = document.getElementById('chat-history');
  let userMessageDiv = document.createElement('div');
  userMessageDiv.className = 'mb-2 user-message';
  userMessageDiv.innerText = input;
  chatHistory.appendChild(userMessageDiv);
  copyTextToClipboard(userMessageDiv);

  // Create response container
  let responseDiv = document.createElement('div');
  responseDiv.className = 'response-message mb-2 text-start';
  responseDiv.style.minHeight = '3em'; // make sure div does not shrink if we cancel the request when no text has been generated yet
  let spinner = document.createElement('div');
  spinner.className = 'spinner-border text-light';
  spinner.setAttribute('role', 'status');
  responseDiv.appendChild(spinner);
  chatHistory.appendChild(responseDiv);

  // create button to stop text generation
  sendButton.innerHTML = "Stop";

  // change autoScroller to keep track of our new responseDiv
  autoScroller.observe(responseDiv);

  Query(input, (word) => {
    // add word to response
    responseDiv.innerHTML = DOMPurify.sanitize(marked.parse(word)); // Append word to response container
  }).then(() => {
    chatHistory.context = responseDiv.innerHTML;
    copyTextToClipboard(responseDiv, true);
    sendButton.innerHTML = "Send";
    spinner.remove();
  }).catch(error => {
    if (error !== 'Stop button pressed') {
      console.error(error);
    }
    sendButton.innerHTML = "Send";
    spinner.remove();
  });

  // Clear user input
  document.getElementById('user-input').value = '';
}

const preCannedQueries = {
  "1": "Tell me about the lighthouse of Alexandria.",
  "2": "Did the lighthouse of Alexandria existed at the same time the library of Alexandria existed?",
  "3": "How did the Pharos lighthouse impact ancient maritime trade?",
  "4": "Tell me about Constantinople?",
};

// Event listener for Ctrl + Enter or CMD + Enter
document.getElementById('user-input').addEventListener('keydown', function (e) {
  if (e.ctrlKey) {
    if (e.key === 'Enter') {
      submitRequest();
    } else {
      const query = preCannedQueries[e.key];
      if (query) {
        document.getElementById('user-input').value = query;
        submitRequest();
      }
    }
  }
});

const MODELS = {
  "tinyllama": { name: "tinyllama", path: "schmuell/TinyLlama-1.1B-Chat-v1.0-int4" },
  "tinyllama_fp16": { name: "tinyllama-fp16", path: "schmuell/TinyLlama-1.1B-Chat-v1.0-fp16", externaldata: true },
  "phi2": { name: "phi2", path: "schmuell/phi2-int4" },
  "phi3": { name: "phi3", path: "schmuell/phi3-int4", externaldata: true },
  "stablelm": { name: "stablelm", path: "schmuell/stablelm-2-zephyr-1_6b-int4" },
}

function getConfig() {
  const query = window.location.search.substring(1);
  var config = {
    model: "phi3",
    provider: "webgpu",
    profiler: 0,
    verbose: 0,
    threads: 1,
    csv: 0,
    max_tokens: 512,
    local: 0,
  }
  let vars = query.split("&");
  for (var i = 0; i < vars.length; i++) {
    let pair = vars[i].split("=");
    if (pair[0] in config) {
      const key = pair[0];
      const value = decodeURIComponent(pair[1]);
      if (typeof config[key] == "number") {
        config[key] = parseInt(value);
      }
      else {
        config[key] = value;
      }
    } else if (pair[0].length > 0) {
      throw new Error("unknown argument: " + pair[0]);
    }
  }
  if (MODELS[config.model] !== undefined) {
    config.model = MODELS[config.model];
  }
  return config;
}

async function fetchAndCache(url) {
  try {
    const cache = await caches.open("onnx");
    let cachedResponse = await cache.match(url);
    if (cachedResponse == undefined) {
      await cache.add(url);
      cachedResponse = await cache.match(url);
      log(`${url} (network)`);
    } else {
      log(`${url} (cached)`);
    }
    const data = await cachedResponse.arrayBuffer();
    return data;
  } catch (error) {
    log(`${url} (network)`);
    return await fetch(url).then(response => response.arrayBuffer());
  }
}

class LLM {
  sess = undefined;
  profiler = false;
  feed = {};
  output_tokens = [];
  eos = 2;
  need_position_ids = true;
  stop = false;
  kv_dims = [];
  dtype = "float16";
  max_tokens = 256;

  constructor() {
  }

  async load(model, options) {
    const provider = options.provider || "webgpu";
    const verbose = options.verbose;
    const local = options.local;
    this.profiler = options.profiler;

    const model_path = (local) ? "models/" + model.path : "https://huggingface.co/" + model.path + "/resolve/main";

    log(`loading... ${model.name},  ${provider}`);
    const json_bytes = await fetchAndCache(model_path + "/config.json");
    let textDecoder = new TextDecoder();
    const model_config = JSON.parse(textDecoder.decode(json_bytes));

    const model_bytes = await fetchAndCache(model_path + "/onnx/decoder_model_merged.onnx");
    const externaldata = (model.externaldata) ? await fetchAndCache(model_path + '/onnx/decoder_model_merged.onnx.data') : false;
    let modelSize = model_bytes.byteLength;
    if (externaldata) {
        modelSize += externaldata.byteLength;
    }
    log(`model size ${Math.round(modelSize / 1024 / 1024)} MB`);

    const opt = {
      executionProviders: [provider],
      preferredOutputLocation: {},
    }

    switch (provider) {
      case "webgpu":
        if (!("gpu" in navigator)) {
          throw new Error("webgpu is NOT supported");
        }
        for (let i = 0; i < model_config.num_hidden_layers; ++i) {
          opt.preferredOutputLocation[`present.${i}.key`] = 'gpu-buffer';
          opt.preferredOutputLocation[`present.${i}.value`] = 'gpu-buffer';
        }
        break;
    }

    if (externaldata !== undefined) {
      opt.externalData = [
        {
          data: externaldata,
          path: 'decoder_model_merged.onnx.data'
        },
      ]
    }
    if (verbose) {
      opt.logSeverityLevel = 0;
      opt.logVerbosityLevel = 0;
      ort.env.logLevel = "verbose";
    }

    ort.env.webgpu.profiling = {}
    if (this.profiler) {
      opt.enableProfiling = true;
      ort.env.webgpu.profilingMode = 'default';
      ort.env.webgpu.profiling.mode = 'default';
    }

    this.sess = await ort.InferenceSession.create(model_bytes, opt);
    this.eos = model_config.eos_token_id;
    this.kv_dims = [1, model_config.num_key_value_heads, 0, model_config.hidden_size / model_config.num_attention_heads];
    this.dtype = config.model.dtype || "float16";
    this.num_layers = model_config.num_hidden_layers;
    this.initilize_feed();
  }

  initilize_feed() {
    this.feed = {};
    const empty = (this.dtype === "float16") ? new Uint16Array() : [];
    for (let i = 0; i < this.num_layers; ++i) {
      this.feed[`past_key_values.${i}.key`] = new ort.Tensor(this.dtype, empty, this.kv_dims)
      this.feed[`past_key_values.${i}.value`] = new ort.Tensor(this.dtype, empty, this.kv_dims)
    }
    this.output_tokens = [];
  }

  argmax(t) {
    const arr = t.data;
    const start = t.dims[2] * (t.dims[1] - 1);
    let max = arr[start];
    let maxidx = 0;

    for (let i = 0; i < t.dims[2]; i++) {
      const val = arr[i + start];
      if (!isFinite(val)) {
        throw new Error("found infinitive in logits");
      }
      if (val > max) {
        max = arr[i + start];
        maxidx = i;
      }
    }
    return maxidx;
  }

  update_kv_cache(feed, outputs) {
    for (const name in outputs) {
      if (name.startsWith('present')) {
        let newName = name.replace('present', 'past_key_values');
        // free old gpu buffer
        const t = feed[newName];
        if (t.location === 'gpu-buffer') {
          t.dispose();
        }
        feed[newName] = outputs[name];
      }
    }
  }

  abort() {
    this.stop = true;
  }

  async generate(tokens, callback, options) {
    const keep_cache = options.keep_cache;
    const max_tokens = options.max_tokens || 256;
    const feed = this.feed;
    const input_ids = new ort.Tensor('int64', BigInt64Array.from(tokens.map(BigInt)), [1, tokens.length]);
    feed['input_ids'] = input_ids;
    this.stop = false;

    if (keep_cache) {
      this.output_tokens.push(...input_ids)
    } else {
        this.initilize_feed();
        this.output_tokens = Array.from(feed['input_ids'].data);
    }

    let last_token = 0n;
    let seqlen = this.output_tokens.length;
    if (this.need_position_ids) {
      if (keep_cache) {
        feed['position_ids'] = new ort.Tensor('int64', BigInt64Array.from({ length: seqlen }, (_, i) => BigInt(i)), [1, input_ids.length]);
      } else {
        feed['position_ids'] = new ort.Tensor('int64', BigInt64Array.from({ length: seqlen }, (_, i) => BigInt(i)), [1, seqlen]);
      }
    }

    while (last_token != this.eos && seqlen < max_tokens && !this.stop) {
      seqlen = this.output_tokens.length;
      feed['attention_mask'] = new ort.Tensor('int64', BigInt64Array.from({ length: seqlen }, () => 1n), [1, seqlen]);
      const outputs = await this.sess.run(feed);
      last_token = BigInt(this.argmax(outputs.logits));
      this.output_tokens.push(last_token);
      if (callback && !this.profiler) {
        callback(this.output_tokens);
      }
      this.update_kv_cache(feed, outputs);
      feed['input_ids'] = new ort.Tensor('int64', BigInt64Array.from([last_token]), [1, 1]);
      if (this.need_position_ids) {
        feed['position_ids'] = new ort.Tensor('int64', BigInt64Array.from([BigInt(seqlen)]), [1, 1]);
      }
    }
    if (this.profiler) {
      this.sess.endProfiling();
    }
    return this.output_tokens;
  }
}


const config = getConfig();
let tokenizer;

env.localModelPath = 'models';
env.allowRemoteModels = config.local == 0;
env.allowLocalModels = config.local == 1;
ort.env.wasm.numThreads = config.threads;
ort.env.wasm.simd = true;
ort.env.wasm.wasmPaths = document.location.pathname.replace('index.html', '') + 'dist/';

const llm = new LLM();

function token_to_text(tokenizer, tokens, startidx) {
  const txt = tokenizer.decode(tokens.slice(startidx), { skip_special_tokens: true, });
  return txt;
}

async function Query(query, cb) {
  let prompt;

  if (config.model.name == 'phi2') {
    prompt = `User:${query}\nAssistant:`;
  } else if (config.model.name == 'phix') {
    prompt = query;
  } else {
    prompt = `"<|system|>\nYou are a friendly assistant.</s>\n<|user|>\n${query}</s>\n<|assistant|>\n`;
  }

  const { input_ids } = await tokenizer(prompt, { return_tensor: false, padding: true, truncation: true });

  const start_timer = performance.now();
  const output_tokens = await llm.generate(input_ids, (output_tokens) => {
    cb(token_to_text(tokenizer, output_tokens, input_ids.length));
  }, {max_tokens: config.max_tokens});

  const took = (performance.now() - start_timer) / 1000;
  const txt = token_to_text(tokenizer, output_tokens, input_ids.length);
  cb(txt);
  const seqlen = output_tokens.length;
  const perf = `${seqlen} tokens in ${took.toFixed(1)}sec, ${(seqlen / took).toFixed(2)} tokens/sec`;
  console.log(perf);
}


async function LoadModel() {
  try {
    tokenizer = await AutoTokenizer.from_pretrained(config.model.path);

    log("Loading model...");
    await llm.load(config.model, {
      provider: config.provider,
      profiler: config.profiler,
      verbose: config.verbose,
      local: config.local,
      max_tokens: config.max_tokens,
    });
    log("Ready.");
  } catch (error) {
    log(error);
  }
}

async function hasFp16() {
  try {
    const adapter = await navigator.gpu.requestAdapter()
    return adapter.features.has('shader-f16')
  } catch (e) {
    return false
  }
}

window.onload = () => {
  hasFp16().then((fp16) => {
    if (fp16) {
      LoadModel().then(() => {
        adjustPadding();
        sendButton.addEventListener('click', submitRequest);
        const userInput = document.getElementById('user-input');
        document.getElementById("status").style.display = "none";
        userInput.focus();
      });
    } else {
      log("Your GPU or Browser doesn't support webgpu/f16");
    }
  });
}