Spaces:
Running
Running
File size: 12,512 Bytes
e4aee93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
<!DOCTYPE html>
<html>
<head>
<title>Example</title>
</head>
<body>
<!-- <script src="https://cdn.jsdelivr.net/npm/onnxruntime-web@dev/dist/ort.webgpu.min.js"> </script> -->
<script src="https://wp-27.sh.intel.com/workspace/project/onnxruntime/js/web/dist/ort.webgpu.min.js"> </script>
<script type="module">
import { AutoTokenizer, env } from '../../transformers/transformers.js';
function log(i) { console.log(i); document.getElementById('status').innerText += `\n${i}`; }
const MODELS = {
"tinyllama": { name: "tinyllama", path: "schmuell/TinyLlama-1.1B-Chat-v1.0-int4" },
"tinyllama_fp16": { name: "tinyllama-fp16", path: "schmuell/TinyLlama-1.1B-Chat-v1.0-fp16", externaldata: true },
"phi2": { name: "phi2", path: "phi2-int4" },
"phi2-mb": { name: "phi2-mb", path: "schmuell/phi2-mb", externaldata: true },
"stablelm": { name: "stablelm", path: "schmuell/stablelm-2-zephyr-1_6b-int4" },
}
function getConfig() {
const query = window.location.search.substring(1);
var config = {
model: "phi2",
provider: "webgpu",
profiler: 0,
verbose: 0,
threads: 1,
trace: 0,
csv: 0,
max_tokens: 256,
local: 1,
}
let vars = query.split("&");
for (var i = 0; i < vars.length; i++) {
let pair = vars[i].split("=");
if (pair[0] in config) {
const key = pair[0];
const value = decodeURIComponent(pair[1]);
if (typeof config[key] == "number") {
config[key] = parseInt(value);
}
else {
config[key] = value;
}
} else if (pair[0].length > 0) {
throw new Error("unknown argument: " + pair[0]);
}
}
if (MODELS[config.model] !== undefined) {
config.model = MODELS[config.model];
}
return config;
}
class LLM {
sess = undefined;
profiler = false;
trace = false;
feed = {};
output_tokens = [];
eos = 2;
need_position_ids = true;
stop = false;
kv_dims = [];
dtype = "float16";
constructor() {
}
async load(model, options) {
const provider = options.provider || "webgpu";
const verbose = options.verbose;
const local = options.local;
this.profiler = options.profiler;
this.trace = options.trace;
const model_path = (local) ? "models/" + model.path : "https://huggingface.co/" + model.path + "/resolve/main";
log(`loading... ${model.name}, ${provider}`);
const json_bytes = await fetchAndCache(model_path + "/config.json");
let textDecoder = new TextDecoder();
const model_config = JSON.parse(textDecoder.decode(json_bytes));
const model_bytes = await fetchAndCache(model_path + "/phi2-int4.onnx");
const externaldata = (model.externaldata) ? await fetchAndCache(model_path + '/onnx/decoder_model_merged.onnx.data') : false;
let modelSize = model_bytes.byteLength;
if (externaldata) {
modelSize += externaldata.byteLength;
}
log(`model size ${Math.round(modelSize / 1024 / 1024)} MB`);
const opt = {
executionProviders: [provider],
preferredOutputLocation: {},
};
switch (provider) {
case "webgpu":
if (!("gpu" in navigator)) {
throw new Error("webgpu is NOT supported");
}
for (let i = 0; i < model_config.num_hidden_layers; ++i) {
opt.preferredOutputLocation[`present.${i}.key`] = 'gpu-buffer';
opt.preferredOutputLocation[`present.${i}.value`] = 'gpu-buffer';
}
break;
case "webnn":
if (!("ml" in navigator)) {
throw new Error("webnn is NOT supported");
}
break;
}
if (externaldata !== undefined) {
opt.externalData = [
{
data: externaldata,
path: 'decoder_model_merged.onnx.data'
},
]
}
if (verbose) {
opt.logSeverityLevel = 0;
opt.logVerbosityLevel = 0;
ort.env.logLevel = "verbose";
ort.env.debug = true;
}
ort.env.webgpu.profiling = {};
if (this.profiler) {
opt.enableProfiling = true;
ort.env.webgpu.profilingMode = 'default';
ort.env.webgpu.profiling.mode = 'default';
}
this.sess = await ort.InferenceSession.create(model_bytes, opt);
if (this.trace) {
ort.env.trace = true;
ort.env.webgpu.profiling.ondata = (version, inputsMetadata, outputsMetadata, kernelId, kernelType,
kernelName, programName, startTime, endTime) => { };
}
this.eos = model_config.eos_token_id;
this.kv_dims = [1, model_config.num_key_value_heads, 0, model_config.hidden_size / model_config.num_attention_heads];
this.dtype = config.model.dtype || "float16";
this.num_layers = model_config.num_hidden_layers;
this.initilize_feed();
}
initilize_feed() {
this.feed = {};
const empty = (this.dtype === "float16") ? new Uint16Array() : [];
for (let i = 0; i < this.num_layers; ++i) {
this.feed[`past_key_values.${i}.key`] = new ort.Tensor(this.dtype, empty, this.kv_dims)
this.feed[`past_key_values.${i}.value`] = new ort.Tensor(this.dtype, empty, this.kv_dims)
}
this.output_tokens = [];
}
argmax(t) {
const arr = t.data;
const start = t.dims[2] * (t.dims[1] - 1);
let max = arr[start];
let maxidx = 0;
for (let i = 0; i < t.dims[2]; i++) {
const val = arr[i + start];
if (!isFinite(val)) {
throw new Error("found infinitive in logits");
}
if (val > max) {
max = arr[i + start];
maxidx = i;
}
}
return maxidx;
}
update_kv_cache(feed, outputs) {
for (const name in outputs) {
if (name.startsWith('present')) {
let newName = name.replace('present', 'past_key_values');
// free old gpu buffer
const t = feed[newName];
if (t.location === 'gpu-buffer') {
t.dispose();
}
feed[newName] = outputs[name];
}
}
}
abort() {
this.stop = true;
}
async generate(tokens, callback, options) {
const keep_cache = options.keep_cache;
const max_tokens = options.max_tokens || 256;
const feed = this.feed;
const input_ids = new ort.Tensor('int64', BigInt64Array.from(tokens.map(BigInt)), [1, tokens.length]);
feed['input_ids'] = input_ids;
this.stop = false;
if (keep_cache) {
this.output_tokens.push(...input_ids)
} else {
this.initilize_feed();
this.output_tokens = Array.from(feed['input_ids'].data);
}
let last_token = 0n;
let seqlen = this.output_tokens.length;
if (this.need_position_ids) {
if (keep_cache) {
feed['position_ids'] = new ort.Tensor('int64', BigInt64Array.from({ length: seqlen }, (_, i) => BigInt(i)), [1, input_ids.length]);
} else {
feed['position_ids'] = new ort.Tensor('int64', BigInt64Array.from({ length: seqlen }, (_, i) => BigInt(i)), [1, seqlen]);
}
}
while (last_token != this.eos && seqlen < max_tokens && !this.stop) {
seqlen = this.output_tokens.length;
feed['attention_mask'] = new ort.Tensor('int64', BigInt64Array.from({ length: seqlen }, () => 1n), [1, seqlen]);
let outputs;
if (this.trace) {
console.timeStamp("RUN-BEGIN");
outputs = await this.sess.run(feed);
console.timeStamp("RUN-END");
} else {
outputs = await this.sess.run(feed);
}
last_token = BigInt(this.argmax(outputs.logits));
this.output_tokens.push(last_token);
if (callback && !this.profiler) {
callback(this.output_tokens);
}
this.update_kv_cache(feed, outputs);
feed['input_ids'] = new ort.Tensor('int64', BigInt64Array.from([last_token]), [1, 1]);
if (this.need_position_ids) {
feed['position_ids'] = new ort.Tensor('int64', BigInt64Array.from([BigInt(seqlen)]), [1, 1]);
}
}
if (this.profiler) {
this.sess.endProfiling();
}
return this.output_tokens;
}
}
const config = getConfig();
env.localModelPath = 'models';
env.allowRemoteModels = config.local == 0;
env.allowLocalModels = config.local == 1;
ort.env.wasm.numThreads = config.threads;
ort.env.wasm.simd = true;
const cons_log = [];
if (config.profiler === 2) {
console.log = function (message) {
if (!message.includes('_fence_')) {
cons_log.push(message);
}
};
}
const tokenizer = await AutoTokenizer.from_pretrained(config.model.path);
function create_download_link(cons_log) {
if (cons_log.length > 0) {
let link = document.getElementById('download').childNodes[0];
if (link === undefined) {
link = document.createElement("a", "download-link");
link.download = "profiler.log";
link.innerText = "Download";
document.getElementById('download').appendChild(link);
}
const base64 = btoa(cons_log.join('\n'));
link.href = `data:application/json;base64,${base64}`;
}
}
async function fetchAndCache(url) {
try {
const cache = await caches.open("onnx");
let cachedResponse = await cache.match(url);
if (cachedResponse == undefined) {
await cache.add(url);
cachedResponse = await cache.match(url);
log(`${url} (network)`);
} else {
log(`${url} (cached)`);
}
const data = await cachedResponse.arrayBuffer();
return data;
} catch (error) {
log(`${url} (network)`);
return await fetch(url).then(response => response.arrayBuffer());
}
}
function token_to_text(tokenizer, tokens, startidx) {
const txt = tokenizer.decode(tokens.slice(startidx), { skip_special_tokens: true, });
return txt;
}
const llm = new LLM();
async function main() {
const model = config.model;
await llm.load(model, {
provider: config.provider,
verbose: config.verbose,
profiler: config.profiler,
trace: config.trace,
local: config.local,
});
document.getElementById('status').innerText = "";
const query = "Tell me about Constantinople.";
let prompt;
if (model.name.includes('phi2')) {
prompt = `User:${query}\nAssistant:`;
} else {
prompt = `"<|system|>\nYou are a friendly assistant.</s>\n<|user|>\n${query}</s>\n<|assistant|>\n`;
}
const { input_ids } = await tokenizer(prompt, { return_tensor: false, padding: true, truncation: true });
const start_timer = performance.now();
const output_tokens = await llm.generate(input_ids, (output_tokens) => {
document.getElementById('result').innerText = token_to_text(tokenizer, output_tokens, input_ids.length);
}, {});
const took = (performance.now() - start_timer) / 1000;
const txt = token_to_text(tokenizer, output_tokens, input_ids.length);
const seqlen = output_tokens.length;
document.getElementById('result').innerText = txt;
const perf = `${seqlen} tokens in ${took.toFixed(1)}sec, ${(seqlen / took).toFixed(2)} tokens/sec`;
console.log(perf + " @@1");
document.getElementById('perf').innerText = perf;
if (config.csv) {
log(`${model.name},${took.toFixed(2)},${(seqlen / took).toFixed(3)},${seqlen},@@2`);
}
}
try {
await main();
} catch (error) {
console.error(error);
document.getElementById('result').innerText = error.message;
} finally {
create_download_link(cons_log);
}
</script>
<div id="status"></div>
<br />
<div id="result"></div>
<br />
<div id="perf"></div>
<br />
<div id="download"></div>
<br />
</body>
</html>
|