File size: 12,512 Bytes
e4aee93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
<!DOCTYPE html>
<html>

<head>
  <title>Example</title>
</head>

<body>
  <!-- <script src="https://cdn.jsdelivr.net/npm/onnxruntime-web@dev/dist/ort.webgpu.min.js"> </script> -->
  <script src="https://wp-27.sh.intel.com/workspace/project/onnxruntime/js/web/dist/ort.webgpu.min.js"> </script>

  <script type="module">
    import { AutoTokenizer, env } from '../../transformers/transformers.js';

    function log(i) { console.log(i); document.getElementById('status').innerText += `\n${i}`; }

    const MODELS = {
      "tinyllama": { name: "tinyllama", path: "schmuell/TinyLlama-1.1B-Chat-v1.0-int4" },
      "tinyllama_fp16": { name: "tinyllama-fp16", path: "schmuell/TinyLlama-1.1B-Chat-v1.0-fp16", externaldata: true },
      "phi2": { name: "phi2", path: "phi2-int4" },
      "phi2-mb": { name: "phi2-mb", path: "schmuell/phi2-mb", externaldata: true },
      "stablelm": { name: "stablelm", path: "schmuell/stablelm-2-zephyr-1_6b-int4" },
    }

    function getConfig() {
      const query = window.location.search.substring(1);
      var config = {
        model: "phi2",
        provider: "webgpu",
        profiler: 0,
        verbose: 0,
        threads: 1,
        trace: 0,
        csv: 0,
        max_tokens: 256,
        local: 1,
      }
      let vars = query.split("&");
      for (var i = 0; i < vars.length; i++) {
        let pair = vars[i].split("=");
        if (pair[0] in config) {
          const key = pair[0];
          const value = decodeURIComponent(pair[1]);
          if (typeof config[key] == "number") {
            config[key] = parseInt(value);
          }
          else {
            config[key] = value;
          }
        } else if (pair[0].length > 0) {
          throw new Error("unknown argument: " + pair[0]);
        }
      }
      if (MODELS[config.model] !== undefined) {
        config.model = MODELS[config.model];
      }
      return config;
    }

    class LLM {
      sess = undefined;
      profiler = false;
      trace = false;
      feed = {};
      output_tokens = [];
      eos = 2;
      need_position_ids = true;
      stop = false;
      kv_dims = [];
      dtype = "float16";

      constructor() {
      }

      async load(model, options) {
        const provider = options.provider || "webgpu";
        const verbose = options.verbose;
        const local = options.local;
        this.profiler = options.profiler;
        this.trace = options.trace;

        const model_path = (local) ? "models/" + model.path : "https://huggingface.co/" + model.path + "/resolve/main";

        log(`loading... ${model.name},  ${provider}`);
        const json_bytes = await fetchAndCache(model_path + "/config.json");
        let textDecoder = new TextDecoder();
        const model_config = JSON.parse(textDecoder.decode(json_bytes));

        const model_bytes = await fetchAndCache(model_path + "/phi2-int4.onnx");
        const externaldata = (model.externaldata) ? await fetchAndCache(model_path + '/onnx/decoder_model_merged.onnx.data') : false;
        let modelSize = model_bytes.byteLength;
        if (externaldata) {
          modelSize += externaldata.byteLength;
        }

        log(`model size ${Math.round(modelSize / 1024 / 1024)} MB`);

        const opt = {
          executionProviders: [provider],
          preferredOutputLocation: {},
        };

        switch (provider) {
          case "webgpu":
            if (!("gpu" in navigator)) {
              throw new Error("webgpu is NOT supported");
            }
            for (let i = 0; i < model_config.num_hidden_layers; ++i) {
              opt.preferredOutputLocation[`present.${i}.key`] = 'gpu-buffer';
              opt.preferredOutputLocation[`present.${i}.value`] = 'gpu-buffer';
            }
            break;
          case "webnn":
            if (!("ml" in navigator)) {
              throw new Error("webnn is NOT supported");
            }
            break;
        }

        if (externaldata !== undefined) {
          opt.externalData = [
            {
              data: externaldata,
              path: 'decoder_model_merged.onnx.data'
            },
          ]
        }
        if (verbose) {
          opt.logSeverityLevel = 0;
          opt.logVerbosityLevel = 0;
          ort.env.logLevel = "verbose";
          ort.env.debug = true;
        }

        ort.env.webgpu.profiling = {};
        if (this.profiler) {
          opt.enableProfiling = true;
          ort.env.webgpu.profilingMode = 'default';
          ort.env.webgpu.profiling.mode = 'default';
        }

        this.sess = await ort.InferenceSession.create(model_bytes, opt);

        if (this.trace) {
          ort.env.trace = true;
          ort.env.webgpu.profiling.ondata = (version, inputsMetadata, outputsMetadata, kernelId, kernelType,
            kernelName, programName, startTime, endTime) => { };
        }

        this.eos = model_config.eos_token_id;
        this.kv_dims = [1, model_config.num_key_value_heads, 0, model_config.hidden_size / model_config.num_attention_heads];
        this.dtype = config.model.dtype || "float16";
        this.num_layers = model_config.num_hidden_layers;
        this.initilize_feed();
      }

      initilize_feed() {
        this.feed = {};
        const empty = (this.dtype === "float16") ? new Uint16Array() : [];
        for (let i = 0; i < this.num_layers; ++i) {
          this.feed[`past_key_values.${i}.key`] = new ort.Tensor(this.dtype, empty, this.kv_dims)
          this.feed[`past_key_values.${i}.value`] = new ort.Tensor(this.dtype, empty, this.kv_dims)
        }
        this.output_tokens = [];
      }


      argmax(t) {
        const arr = t.data;
        const start = t.dims[2] * (t.dims[1] - 1);
        let max = arr[start];
        let maxidx = 0;

        for (let i = 0; i < t.dims[2]; i++) {
          const val = arr[i + start];
          if (!isFinite(val)) {
            throw new Error("found infinitive in logits");
          }
          if (val > max) {
            max = arr[i + start];
            maxidx = i;
          }
        }
        return maxidx;
      }

      update_kv_cache(feed, outputs) {
        for (const name in outputs) {
          if (name.startsWith('present')) {
            let newName = name.replace('present', 'past_key_values');
            // free old gpu buffer
            const t = feed[newName];
            if (t.location === 'gpu-buffer') {
              t.dispose();
            }
            feed[newName] = outputs[name];
          }
        }
      }

      abort() {
        this.stop = true;
      }

      async generate(tokens, callback, options) {
        const keep_cache = options.keep_cache;
        const max_tokens = options.max_tokens || 256;
        const feed = this.feed;
        const input_ids = new ort.Tensor('int64', BigInt64Array.from(tokens.map(BigInt)), [1, tokens.length]);
        feed['input_ids'] = input_ids;
        this.stop = false;

        if (keep_cache) {
          this.output_tokens.push(...input_ids)
        } else {
          this.initilize_feed();
          this.output_tokens = Array.from(feed['input_ids'].data);
        }

        let last_token = 0n;
        let seqlen = this.output_tokens.length;
        if (this.need_position_ids) {
          if (keep_cache) {
            feed['position_ids'] = new ort.Tensor('int64', BigInt64Array.from({ length: seqlen }, (_, i) => BigInt(i)), [1, input_ids.length]);
          } else {
            feed['position_ids'] = new ort.Tensor('int64', BigInt64Array.from({ length: seqlen }, (_, i) => BigInt(i)), [1, seqlen]);
          }
        }

        while (last_token != this.eos && seqlen < max_tokens && !this.stop) {
          seqlen = this.output_tokens.length;
          feed['attention_mask'] = new ort.Tensor('int64', BigInt64Array.from({ length: seqlen }, () => 1n), [1, seqlen]);
          let outputs;
          if (this.trace) {
            console.timeStamp("RUN-BEGIN");
            outputs = await this.sess.run(feed);
            console.timeStamp("RUN-END");
          } else {
            outputs = await this.sess.run(feed);
          }
          last_token = BigInt(this.argmax(outputs.logits));
          this.output_tokens.push(last_token);
          if (callback && !this.profiler) {
            callback(this.output_tokens);
          }
          this.update_kv_cache(feed, outputs);
          feed['input_ids'] = new ort.Tensor('int64', BigInt64Array.from([last_token]), [1, 1]);
          if (this.need_position_ids) {
            feed['position_ids'] = new ort.Tensor('int64', BigInt64Array.from([BigInt(seqlen)]), [1, 1]);
          }
        }
        if (this.profiler) {
          this.sess.endProfiling();
        }
        return this.output_tokens;
      }
    }

    const config = getConfig();
    env.localModelPath = 'models';
    env.allowRemoteModels = config.local == 0;
    env.allowLocalModels = config.local == 1;
    ort.env.wasm.numThreads = config.threads;
    ort.env.wasm.simd = true;

    const cons_log = [];

    if (config.profiler === 2) {
      console.log = function (message) {
        if (!message.includes('_fence_')) {
          cons_log.push(message);
        }
      };
    }

    const tokenizer = await AutoTokenizer.from_pretrained(config.model.path);

    function create_download_link(cons_log) {
      if (cons_log.length > 0) {
        let link = document.getElementById('download').childNodes[0];
        if (link === undefined) {
          link = document.createElement("a", "download-link");
          link.download = "profiler.log";
          link.innerText = "Download";
          document.getElementById('download').appendChild(link);
        }
        const base64 = btoa(cons_log.join('\n'));
        link.href = `data:application/json;base64,${base64}`;
      }
    }

    async function fetchAndCache(url) {
      try {
        const cache = await caches.open("onnx");
        let cachedResponse = await cache.match(url);
        if (cachedResponse == undefined) {
          await cache.add(url);
          cachedResponse = await cache.match(url);
          log(`${url} (network)`);
        } else {
          log(`${url} (cached)`);
        }
        const data = await cachedResponse.arrayBuffer();
        return data;
      } catch (error) {
        log(`${url} (network)`);
        return await fetch(url).then(response => response.arrayBuffer());
      }
    }

    function token_to_text(tokenizer, tokens, startidx) {
      const txt = tokenizer.decode(tokens.slice(startidx), { skip_special_tokens: true, });
      return txt;
    }

    const llm = new LLM();

    async function main() {

      const model = config.model;

      await llm.load(model, {
        provider: config.provider,
        verbose: config.verbose,
        profiler: config.profiler,
        trace: config.trace,
        local: config.local,
      });


      document.getElementById('status').innerText = "";
      const query = "Tell me about Constantinople.";
      let prompt;

      if (model.name.includes('phi2')) {
        prompt = `User:${query}\nAssistant:`;
      } else {
        prompt = `"<|system|>\nYou are a friendly assistant.</s>\n<|user|>\n${query}</s>\n<|assistant|>\n`;
      }
      const { input_ids } = await tokenizer(prompt, { return_tensor: false, padding: true, truncation: true });

      const start_timer = performance.now();
      const output_tokens = await llm.generate(input_ids, (output_tokens) => {
        document.getElementById('result').innerText = token_to_text(tokenizer, output_tokens, input_ids.length);
      }, {});
      const took = (performance.now() - start_timer) / 1000;
      const txt = token_to_text(tokenizer, output_tokens, input_ids.length);
      const seqlen = output_tokens.length;
      document.getElementById('result').innerText = txt;
      const perf = `${seqlen} tokens in ${took.toFixed(1)}sec, ${(seqlen / took).toFixed(2)} tokens/sec`;
      console.log(perf + " @@1");
      document.getElementById('perf').innerText = perf;
      if (config.csv) {
        log(`${model.name},${took.toFixed(2)},${(seqlen / took).toFixed(3)},${seqlen},@@2`);
      }
    }
    try {
      await main();
    } catch (error) {
      console.error(error);
      document.getElementById('result').innerText = error.message;
    } finally {
      create_download_link(cons_log);
    }
  </script>

  <div id="status"></div>
  <br />
  <div id="result"></div>
  <br />
  <div id="perf"></div>
  <br />
  <div id="download"></div>
  <br />

</body>

</html>