File size: 8,659 Bytes
3f4baa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b30688b
 
 
 
 
 
3f4baa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed5373
 
 
3f4baa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed5373
 
3f4baa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
559122a
3f4baa8
 
 
 
 
 
 
 
 
 
559122a
3f4baa8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from model.video_diffusion.models.controlnet3d import ControlNet3DModel
from model.video_diffusion.models.unet_3d_condition import UNetPseudo3DConditionModel
from model.video_diffusion.pipelines.pipeline_stable_diffusion_controlnet3d import Controlnet3DStableDiffusionPipeline
from transformers import DPTForDepthEstimation
from model.annotator.hed import HEDNetwork
import torch
from einops import rearrange,repeat
import imageio
import numpy as np
import cv2
import torch.nn.functional as F
from PIL import Image
import argparse
import tempfile
import os
import gradio as gr


control_mode = 'depth'
control_net_path = f"wf-genius/controlavideo-{control_mode}"
unet = UNetPseudo3DConditionModel.from_pretrained(control_net_path,
                        torch_dtype = torch.float16,
                        subfolder='unet',
                        ).to("cuda") 
controlnet = ControlNet3DModel.from_pretrained(control_net_path,
                        torch_dtype = torch.float16,
                        subfolder='controlnet',
                        ).to("cuda")

if control_mode == 'depth':
    annotator_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
elif control_mode == 'canny':
    annotator_model = None
elif control_mode == 'hed':
    # firstly download from https://huggingface.co/wf-genius/controlavideo-hed/resolve/main/hed-network.pth 
    annotator_model = HEDNetwork('hed-network.pth').to("cuda")

video_controlnet_pipe = Controlnet3DStableDiffusionPipeline.from_pretrained(control_net_path, unet=unet, 
                        controlnet=controlnet, annotator_model=annotator_model,
                        torch_dtype = torch.float16,
                        ).to("cuda")


def to_video(frames, fps: int) -> str:
    out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
    writer = imageio.get_writer(out_file.name, format='FFMPEG', fps=fps)
    for frame in frames:
        writer.append_data(np.array(frame))
    writer.close()
    return out_file.name

def inference(input_video, 
                prompt,
                seed,
                num_inference_steps,
                guidance_scale,
                sampling_rate,
                video_scale,
                init_noise_thres,
                each_sample_frame,
                iter_times,
                h,
                w,
                ):
    num_sample_frames = iter_times * each_sample_frame
    testing_prompt = [prompt]
    np_frames, fps_vid = Controlnet3DStableDiffusionPipeline.get_frames_preprocess(input_video, num_frames=num_sample_frames, sampling_rate=sampling_rate, return_np=True)
    if control_mode == 'depth':
        frames = torch.from_numpy(np_frames).div(255) * 2 - 1
        frames = rearrange(frames, "f h w c -> c f h w").unsqueeze(0)
        frames = rearrange(frames, 'b c f h w -> (b f) c h w')
        control_maps = video_controlnet_pipe.get_depth_map(frames, h, w, return_standard_norm=False)  # (b f) 1 h w
    elif control_mode == 'canny':
        control_maps = np.stack([cv2.Canny(inp, 100, 200) for inp in np_frames])
        control_maps = repeat(control_maps, 'f h w -> f c h w',c=1)
        control_maps = torch.from_numpy(control_maps).div(255)  # 0~1
    elif control_mode == 'hed':
        control_maps = np.stack([video_controlnet_pipe.get_hed_map(inp) for inp in np_frames])
        control_maps = repeat(control_maps, 'f h w -> f c h w',c=1)
        control_maps = torch.from_numpy(control_maps).div(255)  # 0~1
    control_maps = control_maps.to(dtype=controlnet.dtype, device=controlnet.device)
    control_maps = F.interpolate(control_maps, size=(h,w), mode='bilinear', align_corners=False)
    control_maps = rearrange(control_maps, "(b f) c h w -> b c f h w", f=num_sample_frames)
    if control_maps.shape[1] == 1:
        control_maps = repeat(control_maps, 'b c f h w -> b (n c) f h w',  n=3)

    frames = torch.from_numpy(np_frames).div(255)
    frames = rearrange(frames, 'f h w c -> f c h w')
    v2v_input_frames =  torch.nn.functional.interpolate(
                frames,
                size=(h, w),
                mode="bicubic",
                antialias=True,
            ) 
    v2v_input_frames = rearrange(v2v_input_frames, '(b f) c h w -> b c f h w ', f=num_sample_frames)

    out = []
    for i in range(num_sample_frames//each_sample_frame):
        out1 = video_controlnet_pipe(
                # controlnet_hint= control_maps[:,:,:each_sample_frame,:,:],
                # images= v2v_input_frames[:,:,:each_sample_frame,:,:],
                controlnet_hint=control_maps[:,:,i*each_sample_frame-1:(i+1)*each_sample_frame-1,:,:] if i>0 else control_maps[:,:,:each_sample_frame,:,:],
                images=v2v_input_frames[:,:,i*each_sample_frame-1:(i+1)*each_sample_frame-1,:,:] if i>0 else v2v_input_frames[:,:,:each_sample_frame,:,:],
                first_frame_output=out[-1] if i>0 else None,
                prompt=testing_prompt,
                num_inference_steps=num_inference_steps,
                width=w,
                height=h,
                guidance_scale=guidance_scale,
                generator=[torch.Generator(device="cuda").manual_seed(seed)],
                video_scale = video_scale, 
                init_noise_by_residual_thres = init_noise_thres,    # residual-based init. larger thres ==> more smooth.
                controlnet_conditioning_scale=1.0,
                fix_first_frame=True, 
                in_domain=True,
        )
        out1 = out1.images[0]    
        if len(out1) > 1:
            out1 = out1[1:] # drop the first frame
        out.extend(out1)

    return to_video(out, 8)


examples = [
        ["bear.mp4",
        "a bear walking through stars, artstation"],
        ["car-shadow.mp4",
        "a car, sunset, cartoon style, artstation."],
        ["libby.mp4",
        "a dog running, chinese ink painting."],
]

def preview_inference(
        input_video, 
        prompt, seed, 
        num_inference_steps, guidance_scale, 
        sampling_rate, video_scale, init_noise_thres,
        each_sample_frame,iter_times, h, w,
    ):
    return inference(input_video, 
        prompt, seed, 
        num_inference_steps, guidance_scale, 
        sampling_rate, 0.0, 0.0, 1, 1, h, w,)

if __name__ == '__main__':
    with gr.Blocks() as demo:
        with gr.Row():
            # with gr.Column(scale=1):
            input_video = gr.Video(
                label="Input Video", source='upload', format="mp4", visible=True)
            with gr.Column():
                init_noise_thres = gr.Slider(0, 1, value=0.1, step=0.1, label="init_noise_thress")
                each_sample_frame = gr.Slider(6, 16, value=8, step=1, label="each_sample_frame")
                iter_times = gr.Slider(1, 4, value=1, step=1, label="iter_times")
                sampling_rate = gr.Slider(1, 8, value=3, step=1, label="sampling_rate")
                h = gr.Slider(256, 768, value=512, step=64, label="height")
                w = gr.Slider(256, 768, value=512, step=64, label="width")
            with gr.Column():
                seed =  gr.Slider(0, 6666, value=1, step=1, label="seed")
                num_inference_steps =  gr.Slider(5, 50, value=20, step=1, label="num_inference_steps")
                guidance_scale = gr.Slider(1, 20, value=7.5, step=0.5, label="guidance_scale")
                video_scale = gr.Slider(0, 2.5, value=1.5, step=0.1, label="video_scale")
                prompt = gr.Textbox(label='Prompt')
                # preview_button = gr.Button('Preview')
                run_button = gr.Button('Generate Video')
            # with gr.Column(scale=1):
            result = gr.Video(label="Generated Video")
        inputs = [
                input_video,
                prompt,
                seed,
                num_inference_steps,
                guidance_scale,
                sampling_rate,
                video_scale,
                init_noise_thres,
                each_sample_frame,
                iter_times,
                h,
                w,
            ]
    
        gr.Examples(examples=examples,
                    inputs=inputs,
                    outputs=result,
                    fn=inference,
                    cache_examples=False,
                    run_on_click=False,
                    )

        run_button.click(fn=inference,
                            inputs=inputs,
                            outputs=result,)
        # preview_button.click(fn=preview_inference,
        #                     inputs=inputs,
        #                     outputs=result,)
    
    demo.launch(server_name="0.0.0.0", server_port=7860)