Spaces:
Runtime error
Runtime error
# Copyright 2023 Bytedance Ltd. and/or its affiliates | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
class PseudoConv3d(nn.Conv2d): | |
def __init__(self, in_channels, out_channels, kernel_size, temporal_kernel_size=None, **kwargs): | |
super().__init__( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
**kwargs, | |
) | |
if temporal_kernel_size is None: | |
temporal_kernel_size = kernel_size | |
self.conv_temporal = ( | |
nn.Conv1d( | |
out_channels, | |
out_channels, | |
kernel_size=temporal_kernel_size, | |
padding=temporal_kernel_size // 2, | |
) | |
if kernel_size > 1 | |
else None | |
) | |
if self.conv_temporal is not None: | |
nn.init.dirac_(self.conv_temporal.weight.data) # initialized to be identity | |
nn.init.zeros_(self.conv_temporal.bias.data) | |
def forward(self, x): | |
b = x.shape[0] | |
is_video = x.ndim == 5 | |
if is_video: | |
x = rearrange(x, "b c f h w -> (b f) c h w") | |
x = super().forward(x) | |
if is_video: | |
x = rearrange(x, "(b f) c h w -> b c f h w", b=b) | |
if self.conv_temporal is None or not is_video: | |
return x | |
*_, h, w = x.shape | |
x = rearrange(x, "b c f h w -> (b h w) c f") | |
x = self.conv_temporal(x) # 加入空间1D的时序卷积。channel不变。(建模时序信息) | |
x = rearrange(x, "(b h w) c f -> b c f h w", h=h, w=w) | |
return x | |
class UpsamplePseudo3D(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
Parameters: | |
channels: channels in the inputs and outputs. | |
use_conv: a bool determining if a convolution is applied. | |
use_conv_transpose: | |
out_channels: | |
""" | |
def __init__( | |
self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv" | |
): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_conv_transpose = use_conv_transpose | |
self.name = name | |
conv = None | |
if use_conv_transpose: | |
raise NotImplementedError | |
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1) | |
elif use_conv: | |
conv = PseudoConv3d(self.channels, self.out_channels, 3, padding=1) | |
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
if name == "conv": | |
self.conv = conv | |
else: | |
self.Conv2d_0 = conv | |
def forward(self, hidden_states, output_size=None): | |
assert hidden_states.shape[1] == self.channels | |
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 | |
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch | |
# https://github.com/pytorch/pytorch/issues/86679 | |
dtype = hidden_states.dtype | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(torch.float32) | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
hidden_states = hidden_states.contiguous() | |
b = hidden_states.shape[0] | |
is_video = hidden_states.ndim == 5 | |
if is_video: | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
# if `output_size` is passed we force the interpolation output | |
# size and do not make use of `scale_factor=2` | |
if output_size is None: | |
# 先插值再用conv | |
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") | |
else: | |
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") | |
# If the input is bfloat16, we cast back to bfloat16 | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(dtype) | |
if is_video: | |
hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", b=b) | |
if self.use_conv: | |
if self.name == "conv": | |
hidden_states = self.conv(hidden_states) | |
else: | |
hidden_states = self.Conv2d_0(hidden_states) | |
return hidden_states | |
class DownsamplePseudo3D(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
Parameters: | |
channels: channels in the inputs and outputs. | |
use_conv: a bool determining if a convolution is applied. | |
out_channels: | |
padding: | |
""" | |
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.padding = padding | |
stride = 2 | |
self.name = name | |
if use_conv: | |
conv = PseudoConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
else: | |
assert self.channels == self.out_channels | |
conv = nn.AvgPool2d(kernel_size=stride, stride=stride) | |
if name == "conv": | |
self.Conv2d_0 = conv | |
self.conv = conv | |
elif name == "Conv2d_0": | |
self.conv = conv | |
else: | |
self.conv = conv | |
def forward(self, hidden_states): | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv and self.padding == 0: | |
pad = (0, 1, 0, 1) | |
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0) | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv: | |
hidden_states = self.conv(hidden_states) | |
else: | |
b = hidden_states.shape[0] | |
is_video = hidden_states.ndim == 5 | |
if is_video: | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
hidden_states = self.conv(hidden_states) | |
if is_video: | |
hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", b=b) | |
return hidden_states | |
class ResnetBlockPseudo3D(nn.Module): | |
def __init__( | |
self, | |
*, | |
in_channels, | |
out_channels=None, | |
conv_shortcut=False, | |
dropout=0.0, | |
temb_channels=512, | |
groups=32, | |
groups_out=None, | |
pre_norm=True, | |
eps=1e-6, | |
non_linearity="swish", | |
time_embedding_norm="default", | |
kernel=None, | |
output_scale_factor=1.0, | |
use_in_shortcut=None, | |
up=False, | |
down=False, | |
): | |
super().__init__() | |
self.pre_norm = pre_norm | |
self.pre_norm = True | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.time_embedding_norm = time_embedding_norm | |
self.up = up | |
self.down = down | |
self.output_scale_factor = output_scale_factor | |
if groups_out is None: | |
groups_out = groups | |
self.norm1 = torch.nn.GroupNorm( | |
num_groups=groups, num_channels=in_channels, eps=eps, affine=True | |
) | |
self.conv1 = PseudoConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if temb_channels is not None: | |
if self.time_embedding_norm == "default": | |
time_emb_proj_out_channels = out_channels | |
elif self.time_embedding_norm == "scale_shift": | |
time_emb_proj_out_channels = out_channels * 2 | |
else: | |
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") | |
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels) | |
else: | |
self.time_emb_proj = None | |
self.norm2 = torch.nn.GroupNorm( | |
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True | |
) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = PseudoConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if non_linearity == "swish": | |
self.nonlinearity = lambda x: F.silu(x) | |
elif non_linearity == "mish": | |
self.nonlinearity = Mish() | |
elif non_linearity == "silu": | |
self.nonlinearity = nn.SiLU() | |
self.upsample = self.downsample = None | |
if self.up: | |
if kernel == "fir": | |
fir_kernel = (1, 3, 3, 1) | |
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) | |
elif kernel == "sde_vp": | |
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") | |
else: | |
self.upsample = UpsamplePseudo3D(in_channels, use_conv=False) | |
elif self.down: | |
if kernel == "fir": | |
fir_kernel = (1, 3, 3, 1) | |
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) | |
elif kernel == "sde_vp": | |
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) | |
else: | |
self.downsample = DownsamplePseudo3D(in_channels, use_conv=False, padding=1, name="op") | |
self.use_in_shortcut = ( | |
self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut | |
) | |
self.conv_shortcut = None | |
if self.use_in_shortcut: | |
self.conv_shortcut = PseudoConv3d( | |
in_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def forward(self, input_tensor, temb): | |
hidden_states = input_tensor | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
if self.upsample is not None: | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
input_tensor = input_tensor.contiguous() | |
hidden_states = hidden_states.contiguous() | |
input_tensor = self.upsample(input_tensor) | |
hidden_states = self.upsample(hidden_states) | |
elif self.downsample is not None: | |
input_tensor = self.downsample(input_tensor) | |
hidden_states = self.downsample(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if temb is not None: | |
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] | |
if temb is not None and self.time_embedding_norm == "default": | |
is_video = hidden_states.ndim == 5 | |
if is_video: | |
b, c, f, h, w = hidden_states.shape | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
temb = temb.repeat_interleave(f, 0) | |
hidden_states = hidden_states + temb | |
if is_video: | |
hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", b=b) | |
hidden_states = self.norm2(hidden_states) | |
if temb is not None and self.time_embedding_norm == "scale_shift": | |
is_video = hidden_states.ndim == 5 | |
if is_video: | |
b, c, f, h, w = hidden_states.shape | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
temb = temb.repeat_interleave(f, 0) | |
scale, shift = torch.chunk(temb, 2, dim=1) | |
hidden_states = hidden_states * (1 + scale) + shift | |
if is_video: | |
hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", b=b) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
return output_tensor | |
class Mish(torch.nn.Module): | |
def forward(self, hidden_states): | |
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) | |
def upsample_2d(hidden_states, kernel=None, factor=2, gain=1): | |
r"""Upsample2D a batch of 2D images with the given filter. | |
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given | |
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified | |
`gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is | |
a: multiple of the upsampling factor. | |
Args: | |
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. | |
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` | |
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. | |
factor: Integer upsampling factor (default: 2). | |
gain: Scaling factor for signal magnitude (default: 1.0). | |
Returns: | |
output: Tensor of the shape `[N, C, H * factor, W * factor]` | |
""" | |
assert isinstance(factor, int) and factor >= 1 | |
if kernel is None: | |
kernel = [1] * factor | |
kernel = torch.tensor(kernel, dtype=torch.float32) | |
if kernel.ndim == 1: | |
kernel = torch.outer(kernel, kernel) | |
kernel /= torch.sum(kernel) | |
kernel = kernel * (gain * (factor**2)) | |
pad_value = kernel.shape[0] - factor | |
output = upfirdn2d_native( | |
hidden_states, | |
kernel.to(device=hidden_states.device), | |
up=factor, | |
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2), | |
) | |
return output | |
def downsample_2d(hidden_states, kernel=None, factor=2, gain=1): | |
r"""Downsample2D a batch of 2D images with the given filter. | |
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the | |
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the | |
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its | |
shape is a multiple of the downsampling factor. | |
Args: | |
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. | |
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` | |
(separable). The default is `[1] * factor`, which corresponds to average pooling. | |
factor: Integer downsampling factor (default: 2). | |
gain: Scaling factor for signal magnitude (default: 1.0). | |
Returns: | |
output: Tensor of the shape `[N, C, H // factor, W // factor]` | |
""" | |
assert isinstance(factor, int) and factor >= 1 | |
if kernel is None: | |
kernel = [1] * factor | |
kernel = torch.tensor(kernel, dtype=torch.float32) | |
if kernel.ndim == 1: | |
kernel = torch.outer(kernel, kernel) | |
kernel /= torch.sum(kernel) | |
kernel = kernel * gain | |
pad_value = kernel.shape[0] - factor | |
output = upfirdn2d_native( | |
hidden_states, | |
kernel.to(device=hidden_states.device), | |
down=factor, | |
pad=((pad_value + 1) // 2, pad_value // 2), | |
) | |
return output | |
def upfirdn2d_native(tensor, kernel, up=1, down=1, pad=(0, 0)): | |
up_x = up_y = up | |
down_x = down_y = down | |
pad_x0 = pad_y0 = pad[0] | |
pad_x1 = pad_y1 = pad[1] | |
_, channel, in_h, in_w = tensor.shape | |
tensor = tensor.reshape(-1, in_h, in_w, 1) | |
_, in_h, in_w, minor = tensor.shape | |
kernel_h, kernel_w = kernel.shape | |
out = tensor.view(-1, in_h, 1, in_w, 1, minor) | |
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) | |
out = out.view(-1, in_h * up_y, in_w * up_x, minor) | |
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) | |
out = out.to(tensor.device) # Move back to mps if necessary | |
out = out[ | |
:, | |
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), | |
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), | |
:, | |
] | |
out = out.permute(0, 3, 1, 2) | |
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) | |
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) | |
out = F.conv2d(out, w) | |
out = out.reshape( | |
-1, | |
minor, | |
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, | |
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, | |
) | |
out = out.permute(0, 2, 3, 1) | |
out = out[:, ::down_y, ::down_x, :] | |
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 | |
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 | |
return out.view(-1, channel, out_h, out_w) | |