Control-A-Video / model /video_diffusion /models /unet_3d_blocks_control.py
weifeng.genius
first init
3f4baa8
raw
history blame
4.22 kB
# Copyright 2023 Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import nn
from .attention import SpatioTemporalTransformerModel
from .resnet import DownsamplePseudo3D, ResnetBlockPseudo3D, UpsamplePseudo3D
import glob
import json
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import BaseOutput, logging
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from .unet_3d_blocks import (
CrossAttnDownBlockPseudo3D,
CrossAttnUpBlockPseudo3D,
DownBlockPseudo3D,
UNetMidBlockPseudo3DCrossAttn,
UpBlockPseudo3D,
get_down_block,
get_up_block,
)
from .resnet import PseudoConv3d
from diffusers.models.cross_attention import AttnProcessor
from typing import Dict
def set_zero_parameters(module):
for p in module.parameters():
p.detach().zero_()
return module
# ControlNet: Zero Convolution
def zero_conv(channels):
return set_zero_parameters(PseudoConv3d(channels, channels, 1, padding=0))
class ControlNetInputHintBlock(nn.Module):
def __init__(self, hint_channels: int = 3, channels: int = 320):
super().__init__()
# Layer configurations are from reference implementation.
self.input_hint_block = nn.Sequential(
PseudoConv3d(hint_channels, 16, 3, padding=1),
nn.SiLU(),
PseudoConv3d(16, 16, 3, padding=1),
nn.SiLU(),
PseudoConv3d(16, 32, 3, padding=1, stride=2),
nn.SiLU(),
PseudoConv3d(32, 32, 3, padding=1),
nn.SiLU(),
PseudoConv3d(32, 96, 3, padding=1, stride=2),
nn.SiLU(),
PseudoConv3d(96, 96, 3, padding=1),
nn.SiLU(),
PseudoConv3d(96, 256, 3, padding=1, stride=2),
nn.SiLU(),
set_zero_parameters(PseudoConv3d(256, channels, 3, padding=1)),
)
def forward(self, hint: torch.Tensor):
return self.input_hint_block(hint)
class ControlNetPseudoZeroConv3dBlock(nn.Module):
def __init__(
self,
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
down_block_types: Tuple[str] = (
"CrossAttnDownBlockPseudo3D",
"CrossAttnDownBlockPseudo3D",
"CrossAttnDownBlockPseudo3D",
"DownBlockPseudo3D",
),
layers_per_block: int = 2,
):
super().__init__()
self.input_zero_conv = zero_conv(block_out_channels[0])
zero_convs = []
for i, down_block_type in enumerate(down_block_types):
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
for _ in range(layers_per_block):
zero_convs.append(zero_conv(output_channel))
if not is_final_block:
zero_convs.append(zero_conv(output_channel))
self.zero_convs = nn.ModuleList(zero_convs)
self.mid_zero_conv = zero_conv(block_out_channels[-1])
def forward(
self,
down_block_res_samples: List[torch.Tensor],
mid_block_sample: torch.Tensor,
) -> List[torch.Tensor]:
outputs = []
outputs.append(self.input_zero_conv(down_block_res_samples[0]))
for res_sample, zero_conv in zip(down_block_res_samples[1:], self.zero_convs):
outputs.append(zero_conv(res_sample))
outputs.append(self.mid_zero_conv(mid_block_sample))
return outputs