# Copyright 2023 Bytedance Ltd. and/or its affiliates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import glob import json from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.nn as nn import torch.utils.checkpoint from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin from diffusers.utils import BaseOutput, logging from diffusers.models.embeddings import TimestepEmbedding, Timesteps from .unet_3d_blocks import ( CrossAttnDownBlockPseudo3D, CrossAttnUpBlockPseudo3D, DownBlockPseudo3D, UNetMidBlockPseudo3DCrossAttn, UpBlockPseudo3D, get_down_block, get_up_block, ) from .resnet import PseudoConv3d from diffusers.models.cross_attention import AttnProcessor from typing import Dict logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class UNetPseudo3DConditionOutput(BaseOutput): sample: torch.FloatTensor class UNetPseudo3DConditionModel(ModelMixin, ConfigMixin): """ 这里把原来2D Unet的 2D卷积全换成新定义的PseudoConv3d。并且定义了从2D卷积继承的模型参数。 """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, sample_size: Optional[int] = None, in_channels: int = 4, out_channels: int = 4, center_input_sample: bool = False, flip_sin_to_cos: bool = True, freq_shift: int = 0, down_block_types: Tuple[str] = ( "CrossAttnDownBlockPseudo3D", "CrossAttnDownBlockPseudo3D", "CrossAttnDownBlockPseudo3D", "DownBlockPseudo3D", ), mid_block_type: str = "UNetMidBlockPseudo3DCrossAttn", up_block_types: Tuple[str] = ( "UpBlockPseudo3D", "CrossAttnUpBlockPseudo3D", "CrossAttnUpBlockPseudo3D", "CrossAttnUpBlockPseudo3D", ), only_cross_attention: Union[bool, Tuple[bool]] = False, block_out_channels: Tuple[int] = (320, 640, 1280, 1280), layers_per_block: int = 2, downsample_padding: int = 1, mid_block_scale_factor: float = 1, act_fn: str = "silu", norm_num_groups: int = 32, norm_eps: float = 1e-5, cross_attention_dim: int = 1280, attention_head_dim: Union[int, Tuple[int]] = 8, dual_cross_attention: bool = False, use_linear_projection: bool = False, fps_embed_type: Optional[str] = None, num_fps_embeds: Optional[int] = None, upcast_attention: bool = False, resnet_time_scale_shift: str = "default", num_class_embeds=None, ): super().__init__() self.sample_size = sample_size time_embed_dim = block_out_channels[0] * 4 # input self.conv_in = PseudoConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) # time self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) timestep_input_dim = block_out_channels[0] self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) # class embedding if fps_embed_type is None and num_fps_embeds is not None: self.fps_embedding = nn.Embedding(num_fps_embeds, time_embed_dim) elif fps_embed_type == "timestep": self.fps_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) elif fps_embed_type == "identity": self.fps_embedding = nn.Identity(time_embed_dim, time_embed_dim) else: self.fps_embedding = None self.down_blocks = nn.ModuleList([]) self.mid_block = None self.up_blocks = nn.ModuleList([]) if isinstance(only_cross_attention, bool): only_cross_attention = [only_cross_attention] * len(down_block_types) if isinstance(attention_head_dim, int): attention_head_dim = (attention_head_dim,) * len(down_block_types) # down output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 down_block = get_down_block( down_block_type, num_layers=layers_per_block, in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, add_downsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attention_head_dim[i], downsample_padding=downsample_padding, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention[i], upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, ) self.down_blocks.append(down_block) # mid if mid_block_type == "UNetMidBlockPseudo3DCrossAttn": self.mid_block = UNetMidBlockPseudo3DCrossAttn( in_channels=block_out_channels[-1], temb_channels=time_embed_dim, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, resnet_time_scale_shift=resnet_time_scale_shift, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attention_head_dim[-1], resnet_groups=norm_num_groups, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, ) else: raise ValueError(f"unknown mid_block_type : {mid_block_type}") # count how many layers upsample the images self.num_upsamplers = 0 # up reversed_block_out_channels = list(reversed(block_out_channels)) reversed_attention_head_dim = list(reversed(attention_head_dim)) only_cross_attention = list(reversed(only_cross_attention)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): is_final_block = i == len(block_out_channels) - 1 prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] # add upsample block for all BUT final layer if not is_final_block: add_upsample = True self.num_upsamplers += 1 else: add_upsample = False up_block = get_up_block( up_block_type, num_layers=layers_per_block + 1, in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=time_embed_dim, add_upsample=add_upsample, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, attn_num_head_channels=reversed_attention_head_dim[i], dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention[i], upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out self.conv_norm_out = nn.GroupNorm( num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps ) self.conv_act = nn.SiLU() self.conv_out = PseudoConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1) @property def attn_processors(self) -> Dict[str, AttnProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttnProcessor]): if hasattr(module, "set_processor"): processors[f"{name}.processor"] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors def set_attn_processor(self, processor: Union[AttnProcessor, Dict[str, AttnProcessor]]): r""" Parameters: `processor (`dict` of `AttnProcessor` or `AttnProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor of **all** `CrossAttention` layers. In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainablae attention processors.: """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def set_attention_slice(self, slice_size): r""" Enable sliced attention computation. When this option is enabled, the attention module will split the input tensor in slices, to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease. Args: slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`. """ sliceable_head_dims = [] def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module): if hasattr(module, "set_attention_slice"): sliceable_head_dims.append(module.sliceable_head_dim) for child in module.children(): fn_recursive_retrieve_slicable_dims(child) # retrieve number of attention layers for module in self.children(): fn_recursive_retrieve_slicable_dims(module) num_slicable_layers = len(sliceable_head_dims) if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory slice_size = [dim // 2 for dim in sliceable_head_dims] elif slice_size == "max": # make smallest slice possible slice_size = num_slicable_layers * [1] slice_size = ( num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size ) if len(slice_size) != len(sliceable_head_dims): raise ValueError( f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." ) for i in range(len(slice_size)): size = slice_size[i] dim = sliceable_head_dims[i] if size is not None and size > dim: raise ValueError(f"size {size} has to be smaller or equal to {dim}.") # Recursively walk through all the children. # Any children which exposes the set_attention_slice method # gets the message def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): if hasattr(module, "set_attention_slice"): module.set_attention_slice(slice_size.pop()) for child in module.children(): fn_recursive_set_attention_slice(child, slice_size) reversed_slice_size = list(reversed(slice_size)) for module in self.children(): fn_recursive_set_attention_slice(module, reversed_slice_size) def _set_gradient_checkpointing(self, module, value=False): if isinstance( module, (CrossAttnDownBlockPseudo3D, DownBlockPseudo3D, CrossAttnUpBlockPseudo3D, UpBlockPseudo3D), ): module.gradient_checkpointing = value def forward( self, sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, fps_labels: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs=None, down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, mid_block_additional_residual: Optional[torch.Tensor] = None, return_dict: bool = True, ) -> Union[UNetPseudo3DConditionOutput, Tuple]: # By default samples have to be AT least a multiple of the overall upsampling factor. # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). # However, the upsampling interpolation output size can be forced to fit any upsampling size # on the fly if necessary. default_overall_up_factor = 2**self.num_upsamplers # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` forward_upsample_size = False upsample_size = None if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): logger.info("Forward upsample size to force interpolation output size.") forward_upsample_size = True # prepare attention_mask if attention_mask is not None: attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # 0. center input if necessary if self.config.center_input_sample: sample = 2 * sample - 1.0 # 1. time timesteps = timestep if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = sample.device.type == "mps" if isinstance(timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(sample.shape[0]) t_emb = self.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=self.dtype) emb = self.time_embedding(t_emb) if self.fps_embedding is not None: if fps_labels is None: raise ValueError("fps_labels should be provided when num_fps_embeds > 0") if self.config.fps_embed_type == "timestep": fps_labels = self.time_proj(fps_labels) # 和timesteps共用,都是sin embedding?这里的weight不更新的。 # 这里和上面timesteps does not contain any weights and will always return f32 tensors的bug一样。需要先cast过去,不然多机多卡就有问题了。 fps_labels = fps_labels.to(dtype=self.dtype) class_emb = self.fps_embedding(fps_labels) emb = emb + class_emb # 2. pre-process sample = self.conv_in(sample) # 3. down down_block_res_samples = (sample,) for downsample_block in self.down_blocks: if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: sample, res_samples = downsample_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, ) else: sample, res_samples = downsample_block(hidden_states=sample, temb=emb) down_block_res_samples += res_samples if down_block_additional_residuals is not None: new_down_block_res_samples = () for down_block_res_sample, down_block_additional_residual in zip( down_block_res_samples, down_block_additional_residuals ): down_block_res_sample = down_block_res_sample + down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) down_block_res_samples = new_down_block_res_samples # 4. mid sample = self.mid_block( sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask ) if mid_block_additional_residual is not None: sample = sample + mid_block_additional_residual # 5. up for i, upsample_block in enumerate(self.up_blocks): is_final_block = i == len(self.up_blocks) - 1 res_samples = down_block_res_samples[-len(upsample_block.resnets) :] down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] # if we have not reached the final block and need to forward the # upsample size, we do it here if not is_final_block and forward_upsample_size: upsample_size = down_block_res_samples[-1].shape[2:] if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, upsample_size=upsample_size, attention_mask=attention_mask, ) else: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, ) # 6. post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) if not return_dict: return (sample,) return UNetPseudo3DConditionOutput(sample=sample) @classmethod def from_2d_model(cls, model_path, condition_on_fps=False): ''' load a 2d model and convert it to a pseudo 3d model ''' config_path = os.path.join(model_path, "config.json") if not os.path.isfile(config_path): raise RuntimeError(f"{config_path} does not exist") with open(config_path, "r") as f: config = json.load(f) config.pop("_class_name") config.pop("_diffusers_version") block_replacer = { "CrossAttnDownBlock2D": "CrossAttnDownBlockPseudo3D", "DownBlock2D": "DownBlockPseudo3D", "UpBlock2D": "UpBlockPseudo3D", "CrossAttnUpBlock2D": "CrossAttnUpBlockPseudo3D", } def convert_2d_to_3d_block(block): return block_replacer[block] if block in block_replacer else block config["down_block_types"] = [ convert_2d_to_3d_block(block) for block in config["down_block_types"] ] config["up_block_types"] = [convert_2d_to_3d_block(block) for block in config["up_block_types"]] if condition_on_fps: # config["num_fps_embeds"] = 60 # 这个在 trainable embeding时候才需要~ config["fps_embed_type"] = "timestep" # 和timestep保持一致的type。 model = cls(**config) # 调用自身(init), 传入config参数全换成3d的setting state_dict_path_condidates = glob.glob(os.path.join(model_path, "*.bin")) if state_dict_path_condidates: state_dict = torch.load(state_dict_path_condidates[0], map_location="cpu") model.load_2d_state_dict(state_dict=state_dict) return model def load_2d_state_dict(self, state_dict, **kwargs): ''' 2D 部分的参数名完全不变。 ''' state_dict_3d = self.state_dict() for k, v in state_dict.items(): if k not in state_dict_3d: raise KeyError(f"2d state_dict key {k} does not exist in 3d model") elif v.shape != state_dict_3d[k].shape: raise ValueError(f"state_dict shape mismatch, 2d {v.shape}, 3d {state_dict_3d[k].shape}") for k, v in state_dict_3d.items(): if "_temporal" in k: continue if "gamma" in k: continue if k not in state_dict: if "fps_embedding" in k: # 忽略检查fps_embedding continue raise KeyError(f"3d state_dict key {k} does not exist in 2d model") state_dict_3d.update(state_dict) self.load_state_dict(state_dict_3d, **kwargs)