# Copyright 2023 Bytedance Ltd. and/or its affiliates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange class PseudoConv3d(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, temporal_kernel_size=None, **kwargs): super().__init__( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, **kwargs, ) if temporal_kernel_size is None: temporal_kernel_size = kernel_size self.conv_temporal = ( nn.Conv1d( out_channels, out_channels, kernel_size=temporal_kernel_size, padding=temporal_kernel_size // 2, ) if kernel_size > 1 else None ) if self.conv_temporal is not None: nn.init.dirac_(self.conv_temporal.weight.data) # initialized to be identity nn.init.zeros_(self.conv_temporal.bias.data) def forward(self, x): b = x.shape[0] is_video = x.ndim == 5 if is_video: x = rearrange(x, "b c f h w -> (b f) c h w") x = super().forward(x) if is_video: x = rearrange(x, "(b f) c h w -> b c f h w", b=b) if self.conv_temporal is None or not is_video: return x *_, h, w = x.shape x = rearrange(x, "b c f h w -> (b h w) c f") x = self.conv_temporal(x) # 加入空间1D的时序卷积。channel不变。(建模时序信息) x = rearrange(x, "(b h w) c f -> b c f h w", h=h, w=w) return x class UpsamplePseudo3D(nn.Module): """ An upsampling layer with an optional convolution. Parameters: channels: channels in the inputs and outputs. use_conv: a bool determining if a convolution is applied. use_conv_transpose: out_channels: """ def __init__( self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv" ): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.use_conv_transpose = use_conv_transpose self.name = name conv = None if use_conv_transpose: raise NotImplementedError conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1) elif use_conv: conv = PseudoConv3d(self.channels, self.out_channels, 3, padding=1) # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed if name == "conv": self.conv = conv else: self.Conv2d_0 = conv def forward(self, hidden_states, output_size=None): assert hidden_states.shape[1] == self.channels # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch # https://github.com/pytorch/pytorch/issues/86679 dtype = hidden_states.dtype if dtype == torch.bfloat16: hidden_states = hidden_states.to(torch.float32) # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: hidden_states = hidden_states.contiguous() b = hidden_states.shape[0] is_video = hidden_states.ndim == 5 if is_video: hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") # if `output_size` is passed we force the interpolation output # size and do not make use of `scale_factor=2` if output_size is None: # 先插值再用conv hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") else: hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") # If the input is bfloat16, we cast back to bfloat16 if dtype == torch.bfloat16: hidden_states = hidden_states.to(dtype) if is_video: hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", b=b) if self.use_conv: if self.name == "conv": hidden_states = self.conv(hidden_states) else: hidden_states = self.Conv2d_0(hidden_states) return hidden_states class DownsamplePseudo3D(nn.Module): """ A downsampling layer with an optional convolution. Parameters: channels: channels in the inputs and outputs. use_conv: a bool determining if a convolution is applied. out_channels: padding: """ def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.padding = padding stride = 2 self.name = name if use_conv: conv = PseudoConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding) else: assert self.channels == self.out_channels conv = nn.AvgPool2d(kernel_size=stride, stride=stride) if name == "conv": self.Conv2d_0 = conv self.conv = conv elif name == "Conv2d_0": self.conv = conv else: self.conv = conv def forward(self, hidden_states): assert hidden_states.shape[1] == self.channels if self.use_conv and self.padding == 0: pad = (0, 1, 0, 1) hidden_states = F.pad(hidden_states, pad, mode="constant", value=0) assert hidden_states.shape[1] == self.channels if self.use_conv: hidden_states = self.conv(hidden_states) else: b = hidden_states.shape[0] is_video = hidden_states.ndim == 5 if is_video: hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") hidden_states = self.conv(hidden_states) if is_video: hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", b=b) return hidden_states class ResnetBlockPseudo3D(nn.Module): def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=32, groups_out=None, pre_norm=True, eps=1e-6, non_linearity="swish", time_embedding_norm="default", kernel=None, output_scale_factor=1.0, use_in_shortcut=None, up=False, down=False, ): super().__init__() self.pre_norm = pre_norm self.pre_norm = True self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.time_embedding_norm = time_embedding_norm self.up = up self.down = down self.output_scale_factor = output_scale_factor if groups_out is None: groups_out = groups self.norm1 = torch.nn.GroupNorm( num_groups=groups, num_channels=in_channels, eps=eps, affine=True ) self.conv1 = PseudoConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels is not None: if self.time_embedding_norm == "default": time_emb_proj_out_channels = out_channels elif self.time_embedding_norm == "scale_shift": time_emb_proj_out_channels = out_channels * 2 else: raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels) else: self.time_emb_proj = None self.norm2 = torch.nn.GroupNorm( num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True ) self.dropout = torch.nn.Dropout(dropout) self.conv2 = PseudoConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if non_linearity == "swish": self.nonlinearity = lambda x: F.silu(x) elif non_linearity == "mish": self.nonlinearity = Mish() elif non_linearity == "silu": self.nonlinearity = nn.SiLU() self.upsample = self.downsample = None if self.up: if kernel == "fir": fir_kernel = (1, 3, 3, 1) self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) elif kernel == "sde_vp": self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") else: self.upsample = UpsamplePseudo3D(in_channels, use_conv=False) elif self.down: if kernel == "fir": fir_kernel = (1, 3, 3, 1) self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) elif kernel == "sde_vp": self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) else: self.downsample = DownsamplePseudo3D(in_channels, use_conv=False, padding=1, name="op") self.use_in_shortcut = ( self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut ) self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = PseudoConv3d( in_channels, out_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, input_tensor, temb): hidden_states = input_tensor hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) if self.upsample is not None: # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: input_tensor = input_tensor.contiguous() hidden_states = hidden_states.contiguous() input_tensor = self.upsample(input_tensor) hidden_states = self.upsample(hidden_states) elif self.downsample is not None: input_tensor = self.downsample(input_tensor) hidden_states = self.downsample(hidden_states) hidden_states = self.conv1(hidden_states) if temb is not None: temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] if temb is not None and self.time_embedding_norm == "default": is_video = hidden_states.ndim == 5 if is_video: b, c, f, h, w = hidden_states.shape hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") temb = temb.repeat_interleave(f, 0) hidden_states = hidden_states + temb if is_video: hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", b=b) hidden_states = self.norm2(hidden_states) if temb is not None and self.time_embedding_norm == "scale_shift": is_video = hidden_states.ndim == 5 if is_video: b, c, f, h, w = hidden_states.shape hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") temb = temb.repeat_interleave(f, 0) scale, shift = torch.chunk(temb, 2, dim=1) hidden_states = hidden_states * (1 + scale) + shift if is_video: hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", b=b) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) output_tensor = (input_tensor + hidden_states) / self.output_scale_factor return output_tensor class Mish(torch.nn.Module): def forward(self, hidden_states): return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) def upsample_2d(hidden_states, kernel=None, factor=2, gain=1): r"""Upsample2D a batch of 2D images with the given filter. Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a: multiple of the upsampling factor. Args: hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. kernel: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). Returns: output: Tensor of the shape `[N, C, H * factor, W * factor]` """ assert isinstance(factor, int) and factor >= 1 if kernel is None: kernel = [1] * factor kernel = torch.tensor(kernel, dtype=torch.float32) if kernel.ndim == 1: kernel = torch.outer(kernel, kernel) kernel /= torch.sum(kernel) kernel = kernel * (gain * (factor**2)) pad_value = kernel.shape[0] - factor output = upfirdn2d_native( hidden_states, kernel.to(device=hidden_states.device), up=factor, pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2), ) return output def downsample_2d(hidden_states, kernel=None, factor=2, gain=1): r"""Downsample2D a batch of 2D images with the given filter. Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a multiple of the downsampling factor. Args: hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. kernel: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). Returns: output: Tensor of the shape `[N, C, H // factor, W // factor]` """ assert isinstance(factor, int) and factor >= 1 if kernel is None: kernel = [1] * factor kernel = torch.tensor(kernel, dtype=torch.float32) if kernel.ndim == 1: kernel = torch.outer(kernel, kernel) kernel /= torch.sum(kernel) kernel = kernel * gain pad_value = kernel.shape[0] - factor output = upfirdn2d_native( hidden_states, kernel.to(device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2), ) return output def upfirdn2d_native(tensor, kernel, up=1, down=1, pad=(0, 0)): up_x = up_y = up down_x = down_y = down pad_x0 = pad_y0 = pad[0] pad_x1 = pad_y1 = pad[1] _, channel, in_h, in_w = tensor.shape tensor = tensor.reshape(-1, in_h, in_w, 1) _, in_h, in_w, minor = tensor.shape kernel_h, kernel_w = kernel.shape out = tensor.view(-1, in_h, 1, in_w, 1, minor) out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) out = out.view(-1, in_h * up_y, in_w * up_x, minor) out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) out = out.to(tensor.device) # Move back to mps if necessary out = out[ :, max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), :, ] out = out.permute(0, 3, 1, 2) out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape( -1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, ) out = out.permute(0, 2, 3, 1) out = out[:, ::down_y, ::down_x, :] out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 return out.view(-1, channel, out_h, out_w)