Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
intf = gr.Interface(
|
2 |
fn = get_sentiment_score,
|
3 |
inputs = gr.Textbox(),
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import tensorflow_text as text
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
from huggingface_hub import from_pretrained_keras
|
8 |
+
|
9 |
+
model = from_pretrained_keras("weightedhuman/fine-tuned-bert-news-classifier")
|
10 |
+
|
11 |
+
|
12 |
+
def get_sentiment_score(text):
|
13 |
+
if text is not None:
|
14 |
+
serving_results = model \
|
15 |
+
.signatures['serving_default'](tf.constant(text))
|
16 |
+
|
17 |
+
|
18 |
+
serving_results = tf.sigmoid(serving_results['classifier'])
|
19 |
+
|
20 |
+
serving_results_np = serving_results.numpy()
|
21 |
+
|
22 |
+
for i in range(len(serving_results_np)):
|
23 |
+
|
24 |
+
output_value = serving_results_np[i][0]
|
25 |
+
|
26 |
+
return float(output_value)
|
27 |
+
else:
|
28 |
+
return ""
|
29 |
+
|
30 |
intf = gr.Interface(
|
31 |
fn = get_sentiment_score,
|
32 |
inputs = gr.Textbox(),
|