Spaces:
Runtime error
Runtime error
File size: 4,517 Bytes
9dc1a52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
from typing import Optional, List
# from langchain.llms.utils import enforce_stop_tokens
# import torch
import requests
# import logging
# from transformers import AutoTokenizer, AutoModel, AutoConfig
# logging.basicConfig(filename='chat_log.txt', level=logging.INFO)
DEVICE = "cuda"
FORWARD_KEY = 'fk198719-EQCwtk94jYVqrgSbSX61Rmy08KQFdZE7'
# def torch_gc():
# if torch.cuda.is_available():
# with torch.cuda.device(DEVICE):
# torch.cuda.empty_cache()
# torch.cuda.ipc_collect()
class ChatGLM:
max_length: int = 10000
temperature: float = 0
top_p = 0.9
tokenizer: object = None
model: object = None
history_len: int = 10
history = []
URL = 'http://183.131.3.48:9200'
HEADERS = {'Content-Type': 'application/json'}
@property
def _llm_type(self) -> str:
return "ChatGLM"
def __call__(self,
prompt: str,
history: Optional[List[list[str]]] = None,
stop: Optional[List[str]] = None) -> str:
if history:
history = [i for i in history if i[0] is not None] # clear out the system message
history = history[-self.history_len:]
params = {'tokenizers': self.tokenizer, 'prompt': prompt, 'history': history, 'top_p': self.top_p,
'max_length': self.max_length, 'temperature': self.temperature}
response = requests.post(self.URL, headers=self.HEADERS, json=params).json()
answer = response['response']
return answer
class LocalChatGLM:
max_length: int = 10000
temperature: float = 0
top_p = 0.9
tokenizer: object = None
model: object = None
history_len: int = 10
history = []
@property
def _llm_type(self) -> str:
return "ChatGLM"
def __call__(self,
prompt: str,
history: List[List[str]] = [],
stop: Optional[List[str]] = None) -> str:
response, _ = self.model.chat(
self.tokenizer,
prompt,
history=history[-self.history_len:] if self.history_len > 0 else [],
max_length=self.max_length,
temperature=self.temperature,
)
# torch_gc()
# if stop is not None:
# response = enforce_stop_tokens(response, stop)
question = prompt.split('question:\n')[-1]
self.history = self.history+[[question, response]]
return response
class OpenAI3:
max_length: int = 10000
temperature: float = 0.2
top_p = 0.9
tokenizer: object = None
model: object = None
history_len: int = 10
history = []
HEADERS = {'Content-Type': 'application/json', 'Authorization': 'Bearer fk198719-EQCwtk94jYVqrgSbSX61Rmy08KQFdZE7'}
URL ='https://openai.api2d.net/v1/chat/completions'
MODEL_NAME = "gpt-3.5-turbo"
@property
def _llm_type(self) -> str:
return "OPENAI3"
def __call__(self,
prompt: str,
history: Optional[List[List[str]]] = None,
stop: Optional[List[str]] = None) -> str:
message = [{"role": "user", "content": prompt}]
params = {"model": self.MODEL_NAME, "messages": message, 'temperature': self.temperature}
response = requests.post(self.URL, headers=self.HEADERS, json=params).json()
answer = response['choices'][0]['message']['content']
# if stop is not None:
# answer = enforce_stop_tokens(answer, stop)
return answer
class OpenAI4:
max_length: int = 10000
temperature: float = 0.2
top_p = 0.9
tokenizer: object = None
model: object = None
history_len: int = 10
history = []
HEADERS = {'Content-Type': 'application/json', 'Authorization': 'Bearer fk198719-pHAOCyaUXohoZBl0KfRvYf4AuHhWm8pm'}
URL ='https://openai.api2d.net/v1/chat/completions'
MODEL_NAME = "gpt-4"
@property
def _llm_type(self) -> str:
return "OPENAI4"
def __call__(self,
prompt: str,
history: Optional[List[List[str]]] = None,
stop: Optional[List[str]] = None) -> str:
message = [{"role": "user", "content": prompt}]
params = {"model": self.MODEL_NAME, "messages": message, 'temperature': self.temperature}
response = requests.post(self.URL, headers=self.HEADERS, json=params).json()
answer = response['choices'][0]['message']['content']
# if stop is not None:
# answer = enforce_stop_tokens(answer, stop)
return answer |