apollo / app.py
wellborgmann's picture
Update app.py
b29204b verified
raw
history blame
2.75 kB
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# Criando o cliente para interagir com o modelo no Hugging Face.
client = InferenceClient("qwen2.5:0.5b")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Prepara as mensagens para a API
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = "" # Resposta acumulada
try:
# Chama a API de completamento com streaming
# A API do Hugging Face usa o método `client.chat_completion`.
response_stream = client.chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True
)
for message in response_stream:
# Verifica se a resposta contém o conteúdo esperado
if 'choices' not in message or len(message['choices']) == 0 or 'delta' not in message['choices'][0]:
raise ValueError("Resposta inesperada do modelo.")
token = message['choices'][0]['delta']['content']
response += token # Acumula o conteúdo
# Retorna a resposta incrementalmente
yield response
except ValueError as e:
print(f"Erro de valor: {e}")
except ConnectionError as e:
print(f"Erro de conexão: {e}")
except TimeoutError as e:
print(f"Erro de tempo: {e}")
except Exception as e:
print(f"Erro inesperado: {e}")
return response # Retorna a resposta final ao final do processamento
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
# Criando a interface Gradio
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()