Spaces:
Running
Running
# Portrait Photo Generator App | |
# Imports | |
from PIL import Image, ImageFilter | |
import numpy as np | |
from transformers import pipeline | |
import gradio as gr | |
import os | |
model = pipeline("image-segmentation", model="facebook/detr-resnet-50-panoptic") | |
pred = [] | |
def img_resize(image): | |
width = 1280 | |
width_percent = (width / float(image.size[0])) | |
height = int((float(image.size[1]) * float(width_percent))) | |
return image.resize((width, height)) | |
def image_objects(image): | |
global pred | |
image = img_resize(image) | |
pred = model(image) | |
pred_object_list = [str(i)+'_'+x['label'] for i, x in enumerate(pred)] | |
return gr.Dropdown.update(choices = pred_object_list, interactive = True) | |
def blurr_object(image, object, blur_strength): | |
image = img_resize(image) | |
object_number = int(object.split('_')[0]) | |
mask_array = np.asarray(pred[object_number]['mask'])/255 | |
image_array = np.asarray(image) | |
mask_array_three_channel = np.zeros_like(image_array) | |
mask_array_three_channel[:,:,0] = mask_array | |
mask_array_three_channel[:,:,1] = mask_array | |
mask_array_three_channel[:,:,2] = mask_array | |
segmented_image = image_array*mask_array_three_channel | |
blur_image = np.asarray(image.filter(ImageFilter.GaussianBlur(radius=blur_strength))) | |
mask_array_three_channel_invert = 1-mask_array_three_channel | |
blur_image_reverse_mask = blur_image*mask_array_three_channel_invert | |
#seg_out=image_array.astype(np.uint8) | |
blurred_output_image = Image.fromarray((blur_image_reverse_mask).astype(np.uint8)+segmented_image.astype(np.uint8)) | |
for _ in range(int(blur_strength//2.5)): | |
blurred_output_image = blurred_output_image.filter(ImageFilter.SMOOTH_MORE) | |
return blurred_output_image | |
def get_seg(image, object): | |
image = img_resize(image) | |
#blur_image_reverse_mask = blur_image*mask_array_three_channel_invert | |
seg_box=[] | |
for i in range(len(pred)): | |
#object_number = int(object.split('_')[0]) | |
mask_array = np.asarray(pred[i]['mask'])/255 | |
image_array = np.asarray(image) | |
mask_array_three_channel = np.zeros_like(image_array) | |
mask_array_three_channel[:,:,0] = mask_array | |
mask_array_three_channel[:,:,1] = mask_array | |
mask_array_three_channel[:,:,2] = mask_array | |
segmented_image = image_array*mask_array_three_channel | |
seg_out=segmented_image.astype(np.uint8) | |
seg_box.append(seg_out) | |
return(seg_box) | |
app = gr.Blocks() | |
with app: | |
gr.Markdown( | |
""" | |
## Portrait Photo Generator | |
- Create stunning portrait photos by blurring the background of your selected object. | |
- Adjust the blurring strength using the slider. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown( | |
""" | |
### Input Image | |
""") | |
image_input = gr.Image(type="pil") | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
### Found Objects | |
""") | |
with gr.Row(): | |
blur_slider = gr.Slider(minimum=0.5, maximum=10, value=3, label="Adject Blur Strength") | |
with gr.Row(): | |
object_output = gr.Dropdown(label="Select Object From Dropdown") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown( | |
""" | |
### Blurred Image Output | |
""") | |
image_output = gr.Image() | |
with gr.Column(): | |
seg_btn = gr.Button(label="Run") | |
gal1=gr.Gallery(type="filepath").style(grid=10) | |
seg_btn.click(get_seg, inputs=[image_input,object_output], outputs=gal1) | |
image_input.change(fn=image_objects, | |
inputs=image_input, | |
outputs=object_output | |
) | |
object_output.change(fn=blurr_object, | |
inputs=[image_input, object_output, blur_slider], | |
outputs=[image_output]) | |
blur_slider.change(fn=blurr_object, | |
inputs=[image_input, object_output, blur_slider], | |
outputs=[image_output]) | |
app.launch() |