File size: 6,298 Bytes
8703c31
c6d08a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97de935
c6d08a6
 
 
 
 
 
 
da5dea5
97de935
c6d08a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172100
0d5f907
1172100
0d5f907
c6d08a6
 
 
 
 
 
 
0d5f907
c6d08a6
bf69686
c6d08a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172100
c6d08a6
 
 
 
 
 
 
 
 
 
 
 
 
1172100
 
 
 
 
 
c6d08a6
 
 
 
 
 
2259c3d
c6d08a6
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) Microsoft
#               2022 Chengdong Liang ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gradio as gr
import torchaudio
import torchaudio.compliance.kaldi as kaldi
import torch
import onnxruntime as ort
from sklearn.metrics.pairwise import cosine_similarity

STYLE = """
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous">
"""
OUTPUT_OK = (STYLE + """
    <div class="container">
        <div class="row"><h1 style="text-align: center">The speakers are</h1></div>
        <div class="row"><h1 class="display-1 text-success" style="text-align: center">{:.1f}%</h1></div>
        <div class="row"><h1 style="text-align: center">similar</h1></div>
        <div class="row"><h1 class="text-success" style="text-align: center">Welcome, human!</h1></div>
        <div class="row"><small style="text-align: center">(You must get at least 73% to be considered the same person)</small></div>
    </div>
""")
OUTPUT_FAIL = (STYLE + """
    <div class="container">
        <div class="row"><h1 style="text-align: center">The speakers are</h1></div>
        <div class="row"><h1 class="display-1 text-danger" style="text-align: center">{:.1f}%</h1></div>
        <div class="row"><h1 style="text-align: center">similar</h1></div>
        <div class="row"><h1 class="text-danger" style="text-align: center">Warning! stranger!</h1></div>
        <div class="row"><small style="text-align: center">(You must get at least 73% to be considered the same person)</small></div>
    </div>
""")

OUTPUT_ERROR = (STYLE + """
    <div class="container">
        <div class="row"><h1 style="text-align: center">Input Error</h1></div>
        <div class="row"><h1 class="text-danger" style="text-align: center">{}!</h1></div>
    </div>
""")


def compute_fbank(wav_path,
                  num_bel_bins=80,
                  frame_length=25,
                  frame_shift=10,
                  dither=0.0,
                  resample_rate=16000):
    """ Extract fbank, simlilar to the one in wespeaker.dataset.processor,
        While integrating the wave reading and CMN.
    """
    waveform, sample_rate = torchaudio.load(wav_path)
    # resample
    if sample_rate != resample_rate:
        waveform = torchaudio.transforms.Resample(
            orig_freq=sample_rate, new_freq=resample_rate)(waveform)
    waveform = waveform * (1 << 15)
    mat = kaldi.fbank(waveform,
                      num_mel_bins=num_bel_bins,
                      frame_length=frame_length,
                      frame_shift=frame_shift,
                      dither=dither,
                      sample_frequency=sample_rate,
                      window_type='hamming',
                      use_energy=False)
    # CMN, without CVN
    mat = mat - torch.mean(mat, dim=0)
    return mat


class OnnxModel(object):

    def __init__(self, model_path):
        so = ort.SessionOptions()
        so.inter_op_num_threads = 1
        so.intra_op_num_threads = 1
        self.session = ort.InferenceSession(model_path, sess_options=so)

    def extract_embedding(self, wav_path):
        feats = compute_fbank(wav_path)
        feats = feats.unsqueeze(0).numpy()

        embeddings = self.session.run(output_names=['embs'],
                                      input_feed={'feats': feats})
        return embeddings[0]


def speaker_verification(audio_path1, audio_path2, lang='CN'):
    if audio_path1 == None or audio_path2 == None:
        output = OUTPUT_ERROR.format('Please enter two audios')
        return output
    if lang == 'EN':
        model = OnnxModel('pre_model/voxceleb_resnet34.onnx')
    elif lang == 'CN':
        model = OnnxModel('pre_model/cnceleb_resnet34.onnx')
    else:
        output = OUTPUT_ERROR.format('Please select a language')
        return output
    emb1 = model.extract_embedding(audio_path1)
    emb2 = model.extract_embedding(audio_path2)
    cos_score = cosine_similarity(emb1.reshape(1, -1), emb2.reshape(1,
                                                                    -1))[0][0]
    cos_score = (cos_score + 1) / 2.0

    if cos_score >= 0.73:
        output = OUTPUT_OK.format(cos_score * 100)
    else:
        output = OUTPUT_FAIL.format(cos_score * 100)

    return output


# input
inputs = [
    gr.inputs.Audio(source="microphone",
                    type="filepath",
                    optional=True,
                    label='Speaker#1'),
    gr.inputs.Audio(source="microphone",
                    type="filepath",
                    optional=True,
                    label='Speaker#2'),
    gr.Radio(['EN', 'CN'], label='Language'),
]

output = gr.outputs.HTML(label="")

# description
description = ("WeSpeaker Demo ! Try it with your own voice !")

article = (
    "<p style='text-align: center'>"
    "<a href='https://github.com/wenet-e2e/wespeaker' target='_blank'>Github: Learn more about WeSpeaker</a>"
    "</p>")

examples = [
    ['examples/BAC009S0764W0228.wav', 'examples/BAC009S0764W0328.wav', 'CN'],
    ['examples/BAC009S0913W0133.wav', 'examples/BAC009S0764W0228.wav', 'CN'],
    ['examples/00001_spk1.wav', 'examples/00003_spk2.wav', 'EN'],
    ['examples/00010_spk2.wav', 'examples/00024_spk1.wav', 'EN'],
    ['examples/00001_spk1.wav', 'examples/00024_spk1.wav', 'EN'],
    ['examples/00010_spk2.wav', 'examples/00003_spk2.wav', 'EN'],
]

interface = gr.Interface(
    fn=speaker_verification,
    inputs=inputs,
    outputs=output,
    title="Speaker Verification in WeSpeaker : 基于 WeSpeaker 的说话人确认",
    description=description,
    article=article,
    examples=examples,
    theme="huggingface",
)

interface.launch(enable_queue=True)