Spaces:
Sleeping
Sleeping
File size: 10,141 Bytes
b0785a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import copy
from functools import partial
from typing import Callable, Iterable, List, Optional, Tuple, Union, Dict, Any
import murmurhash
from spacy.language import Language
from spacy.tokens.doc import SetEntsDefault # type: ignore
from spacy.training import Example
from spacy.util import filter_spans
from prodigy.components.db import connect
from prodigy.components.decorators import support_both_streams
from prodigy.components.filters import filter_seen_before
from prodigy.components.preprocess import (
add_annot_name,
add_tokens,
add_view_id,
make_ner_suggestions,
make_raw_doc,
resolve_labels,
split_sentences,
)
from prodigy.components.sorters import prefer_uncertain
from prodigy.components.source import GeneratorSource
from prodigy.components.stream import Stream, get_stream, load_noop
from prodigy.core import Arg, recipe
from prodigy.errors import RecipeError
from prodigy.models.matcher import PatternMatcher
from prodigy.models.ner import EntityRecognizerModel, ensure_sentencizer
from prodigy.protocols import ControllerComponentsDict
from prodigy.types import (
ExistingFilePath,
LabelsType,
SourceType,
StreamType,
TaskType,
)
from prodigy.util import (
ANNOTATOR_ID_ATTR,
BINARY_ATTR,
INPUT_HASH_ATTR,
TASK_HASH_ATTR,
combine_models,
copy_nlp,
get_pipe_labels,
log,
msg,
set_hashes,
)
def modify_spans(document):
# Modify the 'spans' key to be an empty list
document['spans'] = []
return document
def spans_equal(s1: Dict[str, Any], s2: Dict[str, Any]) -> bool:
"""Checks if two spans are equal"""
return s1["start"] == s2["start"] and s1["end"] == s2["end"]
def labels_equal(s1: Dict[str, Any], s2: Dict[str, Any]) -> bool:
"""Checks if two spans have the same label"""
return s1["label"] == s2["label"]
def ensure_span_text(eg: TaskType) -> TaskType:
"""Ensure that all spans have a text attribute"""
for span in eg.get("spans", []):
if "text" not in span:
span["text"] = eg["text"][span["start"] : span["end"]]
return eg
def validate_answer(answer: TaskType, *, known_answers_map: Dict[int, TaskType]):
"""Validate the answer against the known answers"""
known_answer = known_answers_map.get(answer[INPUT_HASH_ATTR])
if known_answer is None:
print(f"Skipping validation for answer {answer[INPUT_HASH_ATTR]}, no known answer found to validate against.")
return
known_answer = ensure_span_text(known_answer)
errors = []
known_spans = known_answer.get("spans", [])
answer_spans = answer.get("spans", [])
explanation_label = known_answer.get("meta", {}).get("explanation_label")
explanation_boundaries = known_answer.get("meta", {}).get(
"explanation_boundaries"
)
if not explanation_boundaries:
explanation_boundaries = (
"No explanation boundaries"
)
if len(known_spans) > len(answer_spans):
errors.append(
"You noted fewer entities than expected for this answer. All mentions must be annotated"
)
elif len(known_spans) < len(answer_spans):
errors.append(
"You noted more entities than expected for this answer."
)
if not known_spans:
# For cases where no annotations are expected
errors.append(explanation_label)
for known_span, span in zip(known_spans, answer_spans):
if not labels_equal(known_span, span):
# label error
errors.append(explanation_label)
continue
if not spans_equal(known_span, span):
# boundary error
errors.append(explanation_boundaries)
continue
if len(errors) > 0:
error_msg = "\n".join(errors)
error_msg += "\n\nExpected annotations:"
if known_spans:
expected_spans = [
f'[{s["text"]}]: {s["label"]}' for s in known_spans
]
if expected_spans:
error_msg += "\n"
for span_msg in expected_spans:
error_msg += span_msg + "\n"
else:
error_msg += "\n\nNone."
raise ValueError(error_msg)
@recipe(
"ner.qa.manual",
# fmt: off
dataset=Arg(help="Dataset to save annotations to"),
nlp=Arg(help="Loadable spaCy pipeline for tokenization or blank:lang (e.g. blank:en)"),
source=Arg(help="Data to annotate (file path or '-' to read from standard input)"),
loader=Arg("--loader", "-lo", help="Loader (guessed from file extension if not set)"),
label=Arg("--label", "-l", help="Comma-separated label(s) to annotate or text file with one label per line"),
patterns=Arg("--patterns", "-pt", help="Path to match patterns file"),
exclude=Arg("--exclude", "-e", help="Comma-separated list of dataset IDs whose annotations to exclude"),
highlight_chars=Arg("--highlight-chars", "-C", help="Allow highlighting individual characters instead of tokens"),
# fmt: on
)
def manual(
dataset: str,
nlp: Language,
source: SourceType,
loader: Optional[str] = None,
label: Optional[LabelsType] = None,
patterns: Optional[ExistingFilePath] = None,
exclude: List[str] = [],
highlight_chars: bool = False,
) -> ControllerComponentsDict:
"""
Mark spans by token. Requires only a tokenizer and no entity recognizer,
and doesn't do any active learning. If patterns are provided, their matches
are highlighted in the example, if available. The recipe will present
all examples in order, so even examples without matches are shown. If
character highlighting is enabled, no "tokens" are saved to the database.
"""
log("RECIPE: Starting recipe ner.manual", locals())
labels = get_pipe_labels(label, nlp.pipe_labels.get("ner", []))
stream = get_stream(
source,
loader=loader,
rehash=True,
dedup=True,
input_key="text",
is_binary=False,
)
if patterns is not None:
pattern_matcher = PatternMatcher(nlp, combine_matches=True, all_examples=True)
pattern_matcher = pattern_matcher.from_disk(patterns)
stream.apply(lambda examples: (eg for _, eg in pattern_matcher(examples)))
# Add "tokens" key to the tasks, either with words or characters
stream.apply(lambda examples: (modify_spans(eg) for eg in examples))
exclude_names = [ds.name for ds in exclude] if exclude is not None else None
known_answers = get_stream(
source,
loader=loader,
rehash=True,
dedup=True,
input_key="text",
is_binary=False,
)
known_answers_map = {eg[INPUT_HASH_ATTR]: eg for eg in known_answers}
return {
"view_id": "ner_manual",
"dataset": dataset,
"stream": [_ for _ in stream],
"exclude": exclude_names,
"validate_answer": partial(validate_answer, known_answers_map=known_answers_map),
"config": {
"lang": nlp.lang,
"labels": labels,
"exclude_by": "input",
"ner_manual_highlight_chars": highlight_chars,
},
}
@support_both_streams(stream_arg="stream")
def preprocess_stream(
stream: StreamType,
nlp: Language,
*,
labels: Optional[List[str]],
unsegmented: bool,
set_annotations: bool = True,
) -> StreamType:
if not unsegmented:
stream = split_sentences(nlp, stream) # type: ignore
stream = add_tokens(nlp, stream) # type: ignore
if set_annotations:
spacy_model = f"{nlp.meta['lang']}_{nlp.meta['name']}"
# Add a 'spans' key to each example, with predicted entities
texts = ((eg["text"], eg) for eg in stream)
for doc, eg in nlp.pipe(texts, as_tuples=True, batch_size=10):
task = copy.deepcopy(eg)
spans = []
for ent in doc.ents:
if labels and ent.label_ not in labels:
continue
spans.append(ent)
for span in eg.get("spans", []):
spans.append(doc.char_span(span["start"], span["end"], span["label"]))
spans = filter_spans(spans)
span_dicts = []
for ent in spans:
span_dicts.append(
{
"token_start": ent.start,
"token_end": ent.end - 1,
"start": ent.start_char,
"end": ent.end_char,
"text": ent.text,
"label": ent.label_,
"source": spacy_model,
"input_hash": eg[INPUT_HASH_ATTR],
}
)
task["spans"] = span_dicts
task[BINARY_ATTR] = False
task = set_hashes(task)
yield task
else:
yield from stream
def get_ner_labels(
nlp: Language, *, label: Optional[List[str]], component: str = "ner"
) -> Tuple[List[str], bool]:
model_labels = nlp.pipe_labels.get(component, [])
labels = get_pipe_labels(label, model_labels)
# Check if we're annotating all labels present in the model or a subset
no_missing = len(set(labels).intersection(set(model_labels))) == len(model_labels)
return labels, no_missing
def get_update(nlp: Language, *, no_missing: bool) -> Callable[[List[TaskType]], None]:
def update(answers: List[TaskType]) -> None:
log(f"RECIPE: Updating model with {len(answers)} answers")
examples = []
for eg in answers:
if eg["answer"] == "accept":
doc = make_raw_doc(nlp, eg)
ref = make_raw_doc(nlp, eg)
spans = [
doc.char_span(span["start"], span["end"], label=span["label"])
for span in eg.get("spans", [])
]
value = SetEntsDefault.outside if no_missing else SetEntsDefault.missing
ref.set_ents(spans, default=value)
examples.append(Example(doc, ref))
nlp.update(examples)
return update
|