File size: 12,053 Bytes
bb62e32 993f1a4 bb62e32 bdb7241 bb62e32 bdb7241 bb62e32 bdb7241 bb62e32 bdb7241 bb62e32 993f1a4 f88d1cb bb62e32 5c9db02 bb62e32 63c4ae7 bb62e32 993f1a4 bb62e32 993f1a4 bb62e32 f88d1cb bb62e32 f88d1cb bb62e32 f88d1cb bb62e32 f88d1cb bb62e32 f88d1cb bb62e32 43977ca bb62e32 f88d1cb bb62e32 f88d1cb bb62e32 f88d1cb bb62e32 f88d1cb bb62e32 42e763d bb62e32 f88d1cb bb62e32 db29cff bb62e32 993f1a4 bb62e32 52da96f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import gradio as gr
import torch
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm
from .init_model import model, all_index, valid_subsections
from .blocks import upload_pdb_button, parse_pdb_file
tmp_file_path = "/tmp/results.tsv"
tmp_plot_path = "/tmp/histogram.svg"
# Samples for input
samples = {
"sequence": [
["MSATAEQNARNPKGKGGFARTVSQRKRKRLFLIGGALAVLAVAVGLMLTAFNQDIRFFRTPADLTEQDMTSGARFRLGGLVEEGSVSRTGSELRFTVTDTIKTVKVVFEGIPPDLFREGQGVVAEGRFGSDGLFRADNVLAKHDENYVPKDLADSLKKKGVWEGK"],
["MITLDWEKANGLITTVVQDATTKQVLMVAYMNQESLAKTMATGETWFWSRSRKTLWHKGATSGNIQTVKTIAVDCDADTLLVTVDPAGPACHTGHISCFYRHYPEGKDLT"],
["MDLKQYVSEVQDWPKPGVSFKDITTIMDNGEAYGYATDKIVEYAKDRDVDIVVGPEARGFIIGCPVAYSMGIGFAPVRKEGKLPREVIRYEYDLEYGTNVLTMHKDAIKPGQRVLITDDLLATGGTIEAAIKLVEKLGGIVVGIAFIIELKYLNGIEKIKDYDVMSLISYDE"]
],
"structure": [
["dddddddddddddddpdpppvcppvnvvvvvvvvvvvvvvvvvvvvvvvvvvqdpqdedeqvrddpcqqpvqhkhkykafwappqwdddpqkiwtwghnppgiaieieghdappqddhrfikifiaghdpvrhtygdhidtdddpddddvvnvvvcvvvvndpdd"],
["dddadcpvpvqkakefeaeppprdtadiaiagpvqvvvcvvpqwhwgqdpvvrdidgqcpvpvqiwrwddwdaddnrryiytythtpahsdpvrhvhpppadvvgpddpd"],
["dplvvqwdwdaqpphhpdtdthcvscvvppvslvvqlvvvlvvcvvqvaqeeeeepdqrcsnrvsscvvvvhyywykyfpppddaawdwdwdddppgitiiithlpseaaageyeyegaeqalqprvlrvvvrcvvnnyddaeyeyqeyevcrvncvsvvvhhydyvyydpd"]
],
"text": [
["Proteins with zinc bindings."],
["Proteins locating at cell membrane."],
["Protein that serves as an enzyme."]
],
}
def clear_results():
return "", gr.update(visible=False), gr.update(visible=False)
def plot(scores) -> None:
"""
Plot the distribution of scores and fit a normal distribution.
Args:
scores: List of scores
"""
plt.hist(scores, bins=100, density=True, alpha=0.6)
plt.title('Distribution of similarity scores in the database', fontsize=15)
plt.xlabel('Similarity score', fontsize=15)
plt.ylabel('Density', fontsize=15)
y_ed = plt.gca().get_ylim()[-1]
plt.ylim(-0.05, y_ed)
# Add note
x_st = plt.gca().get_xlim()[0]
text = ("Note: For the \"UniRef50\" and \"Uncharacterized\" databases, the figure illustrates\n "
"only top-ranked clusters (identified using Faiss), whereas for other databases, it\n "
"displays the distribution across all samples.")
plt.text(x_st, -0.04, text, fontsize=8)
mu, std = norm.fit(scores)
# Plot the Gaussian
xmin, xmax = plt.xlim()
_, ymax = plt.ylim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
plt.plot(x, p)
# Plot total number of scores
plt.text(xmax, 0.9*ymax, f"Total number: {len(scores)}", ha='right', fontsize=12)
# Convert the plot to svg format
plt.savefig(tmp_plot_path)
plt.cla()
# Search from database
def search(input: str, nprobe: int, topk: int, input_type: str, query_type: str, subsection_type: str, db: str):
print(f"Input type: {input_type}\n Output type: {query_type}\nDatabase: {db}\nSubsection: {subsection_type}")
input_modality = input_type.replace("sequence", "protein")
with torch.no_grad():
input_embedding = getattr(model, f"get_{input_modality}_repr")([input]).cpu().numpy()
if query_type == "text":
index = all_index["text"][db][subsection_type]["index"]
ids = all_index["text"][db][subsection_type]["ids"]
else:
index = all_index[query_type][db]["index"]
ids = all_index[query_type][db]["ids"]
if hasattr(index, "nprobe"):
if index.nlist < nprobe:
raise gr.Error(f"The number of clusters to search must be less than or equal to the number of clusters in the index ({index.nlist}).")
else:
index.nprobe = nprobe
if topk > index.ntotal:
raise gr.Error(f"You cannot retrieve more than the database size ({index.ntotal}).")
# Retrieve all scores to plot the distribution
scores, ranks = index.search(input_embedding, index.ntotal)
scores, ranks = scores[0], ranks[0]
# Remove inf values
selector = scores > -1
scores = scores[selector]
ranks = ranks[selector]
scores = scores / model.temperature.item()
plot(scores)
top_scores = scores[:topk]
top_ranks = ranks[:topk]
# ranks = [list(range(topk))]
# ids = ["P12345"] * topk
# scores = torch.randn(topk).tolist()
# Write the results to a temporary file for downloading
with open(tmp_file_path, "w") as w:
w.write("Id\tMatching score\n")
for i in range(topk):
rank = top_ranks[i]
w.write(f"{ids[rank]}\t{top_scores[i]}\n")
# Get topk ids
topk_ids = []
for rank in top_ranks:
now_id = ids[rank]
if query_type == "text":
topk_ids.append(now_id)
else:
if db != "PDB":
# Provide link to uniprot website
topk_ids.append(f"[{now_id}](https://www.uniprot.org/uniprotkb/{now_id})")
else:
# Provide link to pdb website
pdb_id = now_id.split("-")[0]
topk_ids.append(f"[{now_id}](https://www.rcsb.org/structure/{pdb_id})")
limit = 1000
df = pd.DataFrame({"Id": topk_ids[:limit], "Matching score": top_scores[:limit]})
if len(topk_ids) > limit:
info_df = pd.DataFrame({"Id": ["Download the file to check all results"], "Matching score": ["..."]},
index=[1000])
df = pd.concat([df, info_df], axis=0)
output = df.to_markdown()
return (output,
gr.DownloadButton(label="Download results", value=tmp_file_path, visible=True, scale=0),
gr.update(value=tmp_plot_path, visible=True))
def change_input_type(choice: str):
# Change examples if input type is changed
global samples
# Set visibility of upload button
if choice == "text":
visible = False
else:
visible = True
return gr.update(samples=samples[choice]), "", gr.update(visible=visible), gr.update(visible=visible)
# Load example from dataset
def load_example(example_id):
return example_id[0]
# Change the visibility of subsection type
def change_output_type(query_type: str, subsection_type: str):
db_type = list(all_index[query_type].keys())[0]
nprobe_visible = check_index_ivf(query_type, db_type, subsection_type)
subsection_visible = True if query_type == "text" else False
return (
gr.update(visible=subsection_visible),
gr.update(visible=nprobe_visible),
gr.update(choices=list(all_index[query_type].keys()), value=db_type)
)
def check_index_ivf(index_type: str, db: str, subsection_type: str = None) -> bool:
"""
Check if the index is of IVF type.
Args:
index_type: Type of index.
subsection_type: If the "index_type" is "text", get the index based on the subsection type.
Returns:
Whether the index is of IVF type or not.
"""
if index_type == "sequence":
index = all_index["sequence"][db]["index"]
elif index_type == "structure":
index = all_index["structure"][db]["index"]
elif index_type == "text":
index = all_index["text"][db][subsection_type]["index"]
# nprobe_visible = True if hasattr(index, "nprobe") else False
# return nprobe_visible
return False
def change_db_type(query_type: str, subsection_type: str, db_type: str):
"""
Change the database to search.
Args:
query_type: The output type.
db_type: The database to search.
"""
if query_type == "text":
subsection_update = gr.update(choices=list(valid_subsections[db_type]), value="Function")
else:
subsection_update = gr.update(visible=False)
nprobe_visible = check_index_ivf(query_type, db_type, subsection_type)
return subsection_update, gr.update(visible=nprobe_visible)
# Build the searching block
def build_search_module():
gr.Markdown(f"# Search from database")
with gr.Row(equal_height=True):
with gr.Column():
# Set input type
input_type = gr.Radio(["sequence", "structure", "text"], label="Input type (e.g. 'text' means searching based on text descriptions)", value="text")
with gr.Row():
# Set output type
query_type = gr.Radio(
["sequence", "structure", "text"],
label="Output type (e.g. 'sequence' means returning qualified sequences)",
value="sequence",
scale=2,
)
# If the output type is "text", provide an option to choose the subsection of text
text_db = list(all_index["text"].keys())[0]
sequence_db = list(all_index["sequence"].keys())[0]
subsection_type = gr.Dropdown(valid_subsections[text_db], label="Subsection of text", value="Function",
interactive=True, visible=False, scale=0)
db_type = gr.Dropdown(all_index["sequence"].keys(), label="Database", value=sequence_db,
interactive=True, visible=True, scale=0)
with gr.Row():
# Input box
input = gr.Text(label="Input")
# Provide an upload button to upload a pdb file
upload_btn, chain_box = upload_pdb_button(visible=False, chain_visible=False)
upload_btn.upload(parse_pdb_file, inputs=[input_type, upload_btn, chain_box], outputs=[input])
# If the index is of IVF type, provide an option to choose the number of clusters.
nprobe_visible = check_index_ivf(query_type.value, db_type.value)
nprobe = gr.Slider(1, 1000000, 1000, step=1, visible=nprobe_visible,
label="Number of clusters to search (lower value for faster search and higher value for more accurate search)")
# Add event listener to output type
query_type.change(fn=change_output_type, inputs=[query_type, subsection_type],
outputs=[subsection_type, nprobe, db_type])
# Add event listener to db type
db_type.change(fn=change_db_type, inputs=[query_type, subsection_type, db_type],
outputs=[subsection_type, nprobe])
# Choose topk results
topk = gr.Slider(1, 1000000, 5, step=1, label="Retrieve top k results")
# Provide examples
examples = gr.Dataset(samples=samples["text"], components=[input], label="Input examples")
# Add click event to examples
examples.click(fn=load_example, inputs=[examples], outputs=input)
# Change examples based on input type
input_type.change(fn=change_input_type, inputs=[input_type], outputs=[examples, input, upload_btn, chain_box])
with gr.Row():
search_btn = gr.Button(value="Search")
clear_btn = gr.Button(value="Clear")
with gr.Row():
with gr.Column():
results = gr.Markdown(label="results", height=450)
download_btn = gr.DownloadButton(label="Download results", visible=False)
# Plot the distribution of scores
histogram = gr.Image(label="Histogram of matching scores", type="filepath", scale=1, visible=False)
search_btn.click(fn=search, inputs=[input, nprobe, topk, input_type, query_type, subsection_type, db_type],
outputs=[results, download_btn, histogram])
clear_btn.click(fn=clear_results, outputs=[results, download_btn, histogram]) |