File size: 3,449 Bytes
52da96f dc7f17f 52da96f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import gradio as gr
import os
from .blocks import upload_pdb_button
from utils.downloader import download_pdb, download_af2
root_dir = __file__.rsplit("/", 3)[0]
structure_types = ["AlphaFoldDB", "PDB"]
def upload_structure(file: str):
return file
def get_structure_path(structure: str, structure_type: str) -> str:
# If the structure is manually uploaded
if structure[0] == "/":
return structure
# If the structure is a Uniprot ID, download the structure from AlphaFoldDB
elif structure_type == "AlphaFoldDB":
save_path = f"{root_dir}/demo/cache/{structure}.pdb"
if not os.path.exists(save_path):
download_af2(structure, "pdb", save_path)
return save_path
# If the structure is a PDB ID, download the structure from PDB
elif structure_type == "PDB":
save_path = f"{root_dir}/demo/cache/{structure}.cif"
if not os.path.exists(save_path):
download_pdb(structure, "cif", save_path)
return save_path
def tmalign(structure_1: str, structure_type_1: str, structure_2: str, structure_type_2: str):
structure_path_1 = get_structure_path(structure_1, structure_type_1)
structure_path_2 = get_structure_path(structure_2, structure_type_2)
cmd = f"/tmp/TMalign {structure_path_1} {structure_path_2}"
r = os.popen(cmd)
text = r.read()
return text
# Build the block for computing protein-text similarity
def build_TMalign():
gr.Markdown(f"# Calculate TM-score between two protein structures")
with gr.Row(equal_height=True):
with gr.Column():
# Compute similarity score between sequence and text
with gr.Row():
structure_1 = gr.Textbox(label="Protein structure 1 (input Uniprot ID or PDB ID or upload a pdb file)")
structure_type_1 = gr.Dropdown(structure_types, label="Structure type (if the structure is manually uploaded, ignore this field)",
value="AlphaFoldDB", interactive=True, visible=True)
# Provide an upload button to upload a pdb file
upload_btn_1, _ = upload_pdb_button(visible=True, chain_visible=False)
upload_btn_1.upload(upload_structure, inputs=[upload_btn_1], outputs=[structure_1])
with gr.Row():
structure_2 = gr.Textbox(label="Protein structure 2 (input Uniprot ID or PDB ID or upload a pdb file)")
structure_type_2 = gr.Dropdown(structure_types, label="Structure type (if the structure is manually uploaded, ignore this field)",
value="AlphaFoldDB", interactive=True, visible=True)
# Provide an upload button to upload a pdb file
upload_btn_2, _ = upload_pdb_button(visible=True, chain_visible=False)
upload_btn_2.upload(upload_structure, inputs=[upload_btn_2], outputs=[structure_2])
compute_btn = gr.Button(value="Compute TM-score")
tmscore = gr.TextArea(label="TM-score", interactive=False)
compute_btn.click(tmalign, inputs=[structure_1, structure_type_1, structure_2, structure_type_2],
outputs=[tmscore])
|