LTEnjoy's picture
Upload 21 files
52da96f verified
raw
history blame
12.2 kB
import gradio as gr
import torch
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm
from .init_model import model, all_index, valid_subsections
from .blocks import upload_pdb_button, parse_pdb_file
tmp_file_path = "/tmp/results.tsv"
tmp_plot_path = "/tmp/histogram.svg"
# Samples for input
samples = [
["Proteins with zinc bindings."],
["Proteins locating at cell membrane."],
["Protein that serves as an enzyme."]
]
# Databases for different modalities
now_db = {
"sequence": list(all_index["sequence"].keys())[0],
"structure": list(all_index["structure"].keys())[0],
"text": list(all_index["text"].keys())[0]
}
def clear_results():
return "", gr.update(visible=False), gr.update(visible=False)
def plot(scores) -> None:
"""
Plot the distribution of scores and fit a normal distribution.
Args:
scores: List of scores
"""
plt.hist(scores, bins=100, density=True, alpha=0.6)
plt.title('Distribution of similarity scores in the database', fontsize=15)
plt.xlabel('Similarity score', fontsize=15)
plt.ylabel('Density', fontsize=15)
mu, std = norm.fit(scores)
# Plot the Gaussian
xmin, xmax = plt.xlim()
_, ymax = plt.ylim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
plt.plot(x, p)
# Plot total number of scores
plt.text(xmax, 0.9*ymax, f"Total number: {len(scores)}", ha='right', fontsize=12)
# Convert the plot to svg format
plt.savefig(tmp_plot_path)
plt.cla()
# Search from database
def search(input: str, nprobe: int, topk: int, input_type: str, query_type: str, subsection_type: str):
input_modality = input_type.replace("sequence", "protein")
with torch.no_grad():
input_embedding = getattr(model, f"get_{input_modality}_repr")([input]).cpu().numpy()
db = now_db[query_type]
if query_type == "text":
index = all_index["text"][db][subsection_type]["index"]
ids = all_index["text"][db][subsection_type]["ids"]
else:
index = all_index[query_type][db]["index"]
ids = all_index[query_type][db]["ids"]
if check_index_ivf(query_type, subsection_type):
if index.nlist < nprobe:
raise gr.Error(f"The number of clusters to search must be less than or equal to the number of clusters in the index ({index.nlist}).")
else:
index.nprobe = nprobe
if topk > index.ntotal:
raise gr.Error(f"You cannot retrieve more than the database size ({index.ntotal}).")
# Retrieve all scores to plot the distribution
scores, ranks = index.search(input_embedding, index.ntotal)
scores, ranks = scores[0], ranks[0]
# Remove inf values
selector = scores > -1
scores = scores[selector]
ranks = ranks[selector]
scores = scores / model.temperature.item()
plot(scores)
top_scores = scores[:topk]
top_ranks = ranks[:topk]
# ranks = [list(range(topk))]
# ids = ["P12345"] * topk
# scores = torch.randn(topk).tolist()
# Write the results to a temporary file for downloading
with open(tmp_file_path, "w") as w:
w.write("Id\tMatching score\n")
for i in range(topk):
rank = top_ranks[i]
w.write(f"{ids[rank]}\t{top_scores[i]}\n")
# Get topk ids
topk_ids = []
for rank in top_ranks:
now_id = ids[rank]
if query_type == "text":
topk_ids.append(now_id)
else:
if db != "PDB":
# Provide link to uniprot website
topk_ids.append(f"[{now_id}](https://www.uniprot.org/uniprotkb/{now_id})")
else:
# Provide link to pdb website
pdb_id = now_id.split("-")[0]
topk_ids.append(f"[{now_id}](https://www.rcsb.org/structure/{pdb_id})")
limit = 1000
df = pd.DataFrame({"Id": topk_ids[:limit], "Matching score": top_scores[:limit]})
if len(topk_ids) > limit:
info_df = pd.DataFrame({"Id": ["Download the file to check all results"], "Matching score": ["..."]},
index=[1000])
df = pd.concat([df, info_df], axis=0)
output = df.to_markdown()
return (output,
gr.DownloadButton(label="Download results", value=tmp_file_path, visible=True, scale=0),
gr.update(value=tmp_plot_path, visible=True))
def change_input_type(choice: str):
# Change examples if input type is changed
global samples
if choice == "text":
samples = [
["Proteins with zinc bindings."],
["Proteins locating at cell membrane."],
["Protein that serves as an enzyme."]
]
elif choice == "sequence":
samples = [
["MSATAEQNARNPKGKGGFARTVSQRKRKRLFLIGGALAVLAVAVGLMLTAFNQDIRFFRTPADLTEQDMTSGARFRLGGLVEEGSVSRTGSELRFTVTDTIKTVKVVFEGIPPDLFREGQGVVAEGRFGSDGLFRADNVLAKHDENYVPKDLADSLKKKGVWEGK"],
["MITLDWEKANGLITTVVQDATTKQVLMVAYMNQESLAKTMATGETWFWSRSRKTLWHKGATSGNIQTVKTIAVDCDADTLLVTVDPAGPACHTGHISCFYRHYPEGKDLT"],
["MDLKQYVSEVQDWPKPGVSFKDITTIMDNGEAYGYATDKIVEYAKDRDVDIVVGPEARGFIIGCPVAYSMGIGFAPVRKEGKLPREVIRYEYDLEYGTNVLTMHKDAIKPGQRVLITDDLLATGGTIEAAIKLVEKLGGIVVGIAFIIELKYLNGIEKIKDYDVMSLISYDE"]
]
elif choice == "structure":
samples = [
["dddddddddddddddpdpppvcppvnvvvvvvvvvvvvvvvvvvvvvvvvvvqdpqdedeqvrddpcqqpvqhkhkykafwappqwdddpqkiwtwghnppgiaieieghdappqddhrfikifiaghdpvrhtygdhidtdddpddddvvnvvvcvvvvndpdd"],
["dddadcpvpvqkakefeaeppprdtadiaiagpvqvvvcvvpqwhwgqdpvvrdidgqcpvpvqiwrwddwdaddnrryiytythtpahsdpvrhvhpppadvvgpddpd"],
["dplvvqwdwdaqpphhpdtdthcvscvvppvslvvqlvvvlvvcvvqvaqeeeeepdqrcsnrvsscvvvvhyywykyfpppddaawdwdwdddppgitiiithlpseaaageyeyegaeqalqprvlrvvvrcvvnnyddaeyeyqeyevcrvncvsvvvhhydyvyydpd"]
]
# Set visibility of upload button
if choice == "text":
visible = False
else:
visible = True
return gr.update(samples=samples), "", gr.update(visible=visible), gr.update(visible=visible)
# Load example from dataset
def load_example(example_id):
return samples[example_id][0]
# Change the visibility of subsection type
def change_output_type(query_type: str, subsection_type: str):
nprobe_visible = check_index_ivf(query_type, subsection_type)
subsection_visible = True if query_type == "text" else False
return (
gr.update(visible=subsection_visible),
gr.update(visible=nprobe_visible),
gr.update(choices=list(all_index[query_type].keys()), value=now_db[query_type])
)
def check_index_ivf(index_type: str, subsection_type: str = None) -> bool:
"""
Check if the index is of IVF type.
Args:
index_type: Type of index.
subsection_type: If the "index_type" is "text", get the index based on the subsection type.
Returns:
Whether the index is of IVF type or not.
"""
db = now_db[index_type]
if index_type == "sequence":
index = all_index["sequence"][db]["index"]
elif index_type == "structure":
index = all_index["structure"][db]["index"]
elif index_type == "text":
index = all_index["text"][db][subsection_type]["index"]
nprobe_visible = True if hasattr(index, "nprobe") else False
return nprobe_visible
def change_db_type(query_type: str, subsection_type: str, db_type: str):
"""
Change the database to search.
Args:
query_type: The output type.
db_type: The database to search.
"""
now_db[query_type] = db_type
if query_type == "text":
subsection_update = gr.update(choices=list(valid_subsections[now_db["text"]]), value="Function")
else:
subsection_update = gr.update(visible=False)
nprobe_visible = check_index_ivf(query_type, subsection_type)
return subsection_update, gr.update(visible=nprobe_visible)
# Build the searching block
def build_search_module():
gr.Markdown(f"# Search from Swiss-Prot database (the whole UniProt database will be supported soon)")
with gr.Row(equal_height=True):
with gr.Column():
# Set input type
input_type = gr.Radio(["sequence", "structure", "text"], label="Input type (e.g. 'text' means searching based on text descriptions)", value="text")
with gr.Row():
# Set output type
query_type = gr.Radio(
["sequence", "structure", "text"],
label="Output type (e.g. 'sequence' means returning qualified sequences)",
value="sequence",
scale=2,
)
# If the output type is "text", provide an option to choose the subsection of text
subsection_type = gr.Dropdown(valid_subsections[now_db["text"]], label="Subsection of text", value="Function",
interactive=True, visible=False, scale=0)
db_type = gr.Dropdown(all_index["sequence"].keys(), label="Database", value=now_db["sequence"],
interactive=True, visible=True, scale=0)
with gr.Row():
# Input box
input = gr.Text(label="Input")
# Provide an upload button to upload a pdb file
upload_btn, chain_box = upload_pdb_button(visible=False)
upload_btn.upload(parse_pdb_file, inputs=[input_type, upload_btn, chain_box], outputs=[input])
# If the index is of IVF type, provide an option to choose the number of clusters.
nprobe_visible = check_index_ivf(query_type.value)
nprobe = gr.Slider(1, 1000000, 1000, step=1, visible=nprobe_visible,
label="Number of clusters to search (lower value for faster search and higher value for more accurate search)")
# Add event listener to output type
query_type.change(fn=change_output_type, inputs=[query_type, subsection_type],
outputs=[subsection_type, nprobe, db_type])
# Add event listener to db type
db_type.change(fn=change_db_type, inputs=[query_type, subsection_type, db_type],
outputs=[subsection_type, nprobe])
# Choose topk results
topk = gr.Slider(1, 1000000, 5, step=1, label="Retrieve top k results")
# Provide examples
examples = gr.Dataset(samples=samples, components=[input], type="index", label="Input examples")
# Add click event to examples
examples.click(fn=load_example, inputs=[examples], outputs=input)
# Change examples based on input type
input_type.change(fn=change_input_type, inputs=[input_type], outputs=[examples, input, upload_btn, chain_box])
with gr.Row():
search_btn = gr.Button(value="Search")
clear_btn = gr.Button(value="Clear")
with gr.Row():
with gr.Column():
results = gr.Markdown(label="results", height=450)
download_btn = gr.DownloadButton(label="Download results", visible=False)
# Plot the distribution of scores
histogram = gr.Image(label="Histogram of matching scores", type="filepath", scale=1, visible=False)
search_btn.click(fn=search, inputs=[input, nprobe, topk, input_type, query_type, subsection_type],
outputs=[results, download_btn, histogram])
clear_btn.click(fn=clear_results, outputs=[results, download_btn, histogram])