wetey commited on
Commit
59e1b96
·
1 Parent(s): 5051697

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -0
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer
3
+ from transformers import GenerationConfig
4
+ from transformers import AutoModelForSeq2SeqLM
5
+
6
+ tokenizer = AutoTokenizer.from_pretrained("t5-small")
7
+ headline = AutoModelForSeq2SeqLM.from_pretrained("wetey/content-summarizer")
8
+ generate_long = AutoModelForSeq2SeqLM.from_pretrained("wetey/content-generator")
9
+
10
+ def generate_headline(text):
11
+ inputs = tokenizer(text, return_tensors="pt").input_ids
12
+
13
+ generation_config = GenerationConfig(temperature = 1.2,
14
+ encoder_no_repeat_ngram_size = 4)
15
+
16
+ outputs = headline.generate(inputs,
17
+ do_sample = True,
18
+ generation_config = generation_config)
19
+
20
+ return tokenizer.decode(outputs[0], skip_special_tokens = True)
21
+
22
+ def generate_content(text):
23
+ inputs = tokenizer(text, return_tensors="pt").input_ids
24
+ generation_config = GenerationConfig(temperature = 1.2,
25
+ encoder_no_repeat_ngram_size = 2,
26
+ min_length = 50,
27
+ max_length = 512,
28
+ length_penalty = 1.5,
29
+ num_beams = 4,
30
+ repetition_penalty = 1.5,
31
+ no_repeat_ngram_size = 3)
32
+ outputs = generate_long.generate(inputs,
33
+ do_sample = True,
34
+ generation_config = generation_config)
35
+
36
+ return tokenizer.decode(outputs[0], skip_special_tokens = True)
37
+
38
+ textbox = gr.Textbox(label="Type your text here", lines=2)
39
+
40
+ demo = gr.Blocks()
41
+
42
+ with demo:
43
+ text_input = gr.Textbox()
44
+ text_output = gr.Textbox()
45
+
46
+ b1 = gr.Button("Generate headline")
47
+ b2 = gr.Button("Generate long content")
48
+
49
+ b1.click(generate_headline, inputs=text_input, outputs=text_output)
50
+ b2.click(generate_content, inputs=text_input, outputs=text_output)
51
+
52
+ demo.launch()