Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,19 +8,21 @@ headline = AutoModelForSeq2SeqLM.from_pretrained("wetey/content-summarizer")
|
|
8 |
generate_long = AutoModelForSeq2SeqLM.from_pretrained("wetey/content-generator")
|
9 |
|
10 |
def generate_headline(text):
|
11 |
-
inputs = tokenizer(text, return_tensors="pt").input_ids
|
12 |
|
|
|
|
|
|
|
13 |
generation_config = GenerationConfig(temperature = 1.2,
|
14 |
-
encoder_no_repeat_ngram_size =
|
15 |
-
|
16 |
-
outputs = headline.generate(inputs,
|
17 |
-
do_sample = True,
|
18 |
-
generation_config = generation_config)
|
19 |
|
20 |
return tokenizer.decode(outputs[0], skip_special_tokens = True)
|
21 |
|
22 |
def generate_content(text):
|
23 |
-
|
|
|
|
|
|
|
24 |
generation_config = GenerationConfig(temperature = 1.2,
|
25 |
encoder_no_repeat_ngram_size = 2,
|
26 |
min_length = 50,
|
@@ -29,9 +31,7 @@ def generate_content(text):
|
|
29 |
num_beams = 4,
|
30 |
repetition_penalty = 1.5,
|
31 |
no_repeat_ngram_size = 3)
|
32 |
-
outputs = generate_long.generate(inputs,
|
33 |
-
do_sample = True,
|
34 |
-
generation_config = generation_config)
|
35 |
|
36 |
return tokenizer.decode(outputs[0], skip_special_tokens = True)
|
37 |
|
|
|
8 |
generate_long = AutoModelForSeq2SeqLM.from_pretrained("wetey/content-generator")
|
9 |
|
10 |
def generate_headline(text):
|
|
|
11 |
|
12 |
+
prefix = "summarize "
|
13 |
+
input = prefix + text
|
14 |
+
inputs = tokenizer(input, return_tensors = "pt", max_length = 128, truncation = True).input_ids
|
15 |
generation_config = GenerationConfig(temperature = 1.2,
|
16 |
+
encoder_no_repeat_ngram_size = 7)
|
17 |
+
outputs = headline.generate(inputs, do_sample = True, generation_config = generation_config)
|
|
|
|
|
|
|
18 |
|
19 |
return tokenizer.decode(outputs[0], skip_special_tokens = True)
|
20 |
|
21 |
def generate_content(text):
|
22 |
+
|
23 |
+
prefix = "generate_longer_text_from_headline: "
|
24 |
+
input = prefix + text
|
25 |
+
inputs = tokenizer(input, return_tensors="pt", max_length = 128, truncation = True).input_ids
|
26 |
generation_config = GenerationConfig(temperature = 1.2,
|
27 |
encoder_no_repeat_ngram_size = 2,
|
28 |
min_length = 50,
|
|
|
31 |
num_beams = 4,
|
32 |
repetition_penalty = 1.5,
|
33 |
no_repeat_ngram_size = 3)
|
34 |
+
outputs = generate_long.generate(inputs, do_sample = True, generation_config = generation_config)
|
|
|
|
|
35 |
|
36 |
return tokenizer.decode(outputs[0], skip_special_tokens = True)
|
37 |
|