File size: 2,492 Bytes
66a5d97
 
4771e5d
5f2a839
31a5080
ed59139
 
 
e802041
5f2a839
ed59139
 
e802041
ed59139
 
08c8208
ed59139
 
e802041
398ee6b
ed59139
8728056
5f2a839
398ee6b
 
 
 
 
 
f758f3f
 
0056b34
3579d89
f758f3f
62e7eb5
 
ce82031
398ee6b
5f2a839
398ee6b
 
 
5f2a839
398ee6b
 
 
8728056
398ee6b
 
8728056
398ee6b
38b3be0
398ee6b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
import spaces  
import os
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
IS_SPACE = os.environ.get("SPACE_ID", None) is not None

device = "cuda" if torch.cuda.is_available() else "cpu"
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#dtype = torch.float16
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
print(f"Using device: {device}")
#print(f"Using dtype: {dtype}")
print(f"low memory: {LOW_MEMORY}")
model_name = "ruslanmv/Medical-Llama3-8B"
# Move model and tokenizer to the CUDA device
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
@spaces.GPU
def askme(symptoms, question):
    sys_message = '''\
    You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and
    provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help.
    '''
    content = symptoms + " " + question
    messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": content}]
    prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(prompt, return_tensors="pt").to(device)  # Ensure inputs are on CUDA device
    outputs = model.generate(**inputs, max_new_tokens=200, use_cache=True)
    response_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].strip() #skip_special_tokens=True
    # Remove system messages and content
   #  Extract only the assistant's response
    assistant_response =response_text.split("assistant")[1].strip().split("user")[0].strip()   
    return assistant_response
    
# Example usage
symptoms = '''\
I'm a 35-year-old male and for the past few months, I've been experiencing fatigue,
increased sensitivity to cold, and dry, itchy skin.
'''
question = '''\
Could these symptoms be related to hypothyroidism?
If so, what steps should I take to get a proper diagnosis and discuss treatment options?
'''
examples = [ {"symptoms": symptoms, "question": question}]
iface = gr.Interface(
    fn=askme,
    inputs=["symptoms", "question"],
    outputs="text",
    examples = examples,  
    title="Medical AI Chatbot",
    description="Ask me a medical question!"
)

iface.launch()