File size: 2,302 Bytes
66a5d97
 
4771e5d
5f2a839
31a5080
ed59139
 
 
e802041
5f2a839
ed59139
 
e802041
ed59139
 
 
 
08c8208
ed59139
 
e802041
398ee6b
 
ed59139
398ee6b
5f2a839
398ee6b
 
 
 
 
 
ed59139
398ee6b
 
 
 
 
 
5f2a839
398ee6b
 
 
5f2a839
398ee6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
import spaces  
import os
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
IS_SPACE = os.environ.get("SPACE_ID", None) is not None

device = "cuda" if torch.cuda.is_available() else "cpu"
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#dtype = torch.float16
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
print(f"Using device: {device}")
#print(f"Using dtype: {dtype}")
print(f"low memory: {LOW_MEMORY}")

device = "cuda"
model_name = "ruslanmv/Medical-Llama3-8B"
# Move model and tokenizer to the CUDA device
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token

@spaces.GPU
def askme(symptoms, question):
    sys_message = '''\
    You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and
    provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help.
    '''
    content = symptoms + " " + question
    messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": content}]
    prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(prompt, return_tensors="pt").to(device)  # Ensure inputs are on CUDA device
    outputs = model.generate(**inputs, max_new_tokens=200, use_cache=True)
    response_text = tokenizer.batch_decode(outputs)[0].strip()
    answer = response_text.split('<|im_start|>assistant')[-1].strip()
    return answer

# Example usage
symptoms = '''\
I'm a 35-year-old male and for the past few months, I've been experiencing fatigue,
increased sensitivity to cold, and dry, itchy skin.
'''
question = '''\
Could these symptoms be related to hypothyroidism?
If so, what steps should I take to get a proper diagnosis and discuss treatment options?
'''

examples = [
    [symptoms, question]
]

iface = gr.Interface(
    fn=askme,
    inputs=["text", "text"],
    outputs="text",
    examples=examples,
    title="Medical AI Chatbot",
    description="Ask me a medical question!"
)

iface.launch()