whaohan commited on
Commit
ada4b81
·
verified ·
1 Parent(s): 946c409

init commit

Browse files
Files changed (47) hide show
  1. .gitattributes +5 -0
  2. README.md +111 -14
  3. app.py +243 -0
  4. assets/BPT.png +0 -0
  5. assets/teaser.png +3 -0
  6. config/BPT-open-8k-8-16.yaml +22 -0
  7. examples/AdventureYouth.glb +3 -0
  8. examples/Astrologers.glb +3 -0
  9. examples/Sheep.glb +3 -0
  10. examples/Spider.glb +3 -0
  11. main.py +126 -0
  12. metrics.py +39 -0
  13. miche/.DS_Store +0 -0
  14. miche/LICENSE +674 -0
  15. miche/__init__.py +0 -0
  16. miche/encode.py +74 -0
  17. miche/michelangelo/.DS_Store +0 -0
  18. miche/michelangelo/__init__.py +1 -0
  19. miche/michelangelo/graphics/__init__.py +1 -0
  20. miche/michelangelo/graphics/__pycache__/__init__.cpython-38.pyc +0 -0
  21. miche/michelangelo/graphics/__pycache__/__init__.cpython-39.pyc +0 -0
  22. miche/michelangelo/graphics/primitives/__init__.py +4 -0
  23. miche/michelangelo/graphics/primitives/volume.py +21 -0
  24. miche/michelangelo/models/__init__.py +1 -0
  25. miche/michelangelo/models/modules/__init__.py +3 -0
  26. miche/michelangelo/models/modules/checkpoint.py +64 -0
  27. miche/michelangelo/models/modules/distributions.py +83 -0
  28. miche/michelangelo/models/modules/embedder.py +213 -0
  29. miche/michelangelo/models/modules/transformer_blocks.py +286 -0
  30. miche/michelangelo/models/tsal/__init__.py +1 -0
  31. miche/michelangelo/models/tsal/asl_pl_module.py +383 -0
  32. miche/michelangelo/models/tsal/clip_asl_module.py +118 -0
  33. miche/michelangelo/models/tsal/inference_utils.py +76 -0
  34. miche/michelangelo/models/tsal/loss.py +130 -0
  35. miche/michelangelo/models/tsal/sal_perceiver.py +410 -0
  36. miche/michelangelo/models/tsal/tsal_base.py +125 -0
  37. miche/michelangelo/utils/__init__.py +3 -0
  38. miche/michelangelo/utils/misc.py +83 -0
  39. miche/shapevae-256.yaml +46 -0
  40. model/.DS_Store +0 -0
  41. model/__init__.py +0 -0
  42. model/data_utils.py +194 -0
  43. model/miche_conditioner.py +86 -0
  44. model/model.py +379 -0
  45. model/serializaiton.py +241 -0
  46. requirements.txt +30 -0
  47. utils.py +88 -0
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/teaser.png filter=lfs diff=lfs merge=lfs -text
37
+ examples/AdventureYouth.glb filter=lfs diff=lfs merge=lfs -text
38
+ examples/Astrologers.glb filter=lfs diff=lfs merge=lfs -text
39
+ examples/Sheep.glb filter=lfs diff=lfs merge=lfs -text
40
+ examples/Spider.glb filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,14 +1,111 @@
1
- ---
2
- title: Bpt
3
- emoji: 🚀
4
- colorFrom: blue
5
- colorTo: green
6
- sdk: gradio
7
- sdk_version: 5.6.0
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- short_description: demo for BPT
12
- ---
13
-
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Scaling Mesh Generation via Compressive Tokenization
2
+
3
+ ### [Project Page](https://whaohan.github.io/bpt) | [Paper](https://arxiv.org/abs/2411.07025) | [Weight](https://huggingface.co/whaohan/bpt/tree/main)
4
+
5
+
6
+ ## 📑 Open-source Plan
7
+
8
+ - [x] Inference conditioned on point cloud
9
+ - [x] Checkpoints
10
+ - [x] Evaluation metrics
11
+ - [ ] Inference conditioned on images
12
+ - [ ] Training
13
+
14
+
15
+ ## **Abstract**
16
+ <p align="center">
17
+ <img src="./assets/teaser.png" height=450>
18
+ </p>
19
+
20
+ We propose a compressive yet effective mesh representation, Blocked and Patchified Tokenization (BPT), facilitating the generation of meshes exceeding 8k faces. BPT compresses mesh sequences by employing block-wise indexing and patch aggregation, reducing their length by approximately 75% compared to the original sequences. This compression milestone unlocks the potential to utilize mesh data with significantly more faces, thereby enhancing detail richness and improving generation robustness. Empowered with the BPT, we have built a foundation mesh generative model training on scaled mesh data to support flexible control for point clouds and images. Our model demonstrates the capability to generate meshes with intricate details and accurate topology, achieving SoTA performance on mesh generation and reaching the level for direct product usage.
21
+
22
+ ## 🎉 **Blocked and Patchified Tokenization (BPT)**
23
+
24
+ <p align="center">
25
+ <img src="assets/BPT.png" height=300>
26
+ </p>
27
+
28
+
29
+ ## Get Started
30
+
31
+ #### Begin by cloning the repository:
32
+
33
+ ```shell
34
+ git clone https://github.com/whaohan/bpt.git
35
+ cd bpt
36
+ ```
37
+
38
+ #### Installation Guide for Linux
39
+
40
+
41
+ Install the packages in `requirements.txt`. The code is tested under CUDA version 12.1 and python 3.9.
42
+
43
+ ```bash
44
+ conda create -n bpt python=3.9
45
+ conda activate bpt
46
+ pip install torch==2.1.2 torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cu121
47
+ pip install -r requirements.txt
48
+ ```
49
+
50
+
51
+ #### Download Pretrained Models
52
+
53
+ The models are available at [huggingface](https://huggingface.co/whaohan/bpt/tree/main).
54
+ Currently, we resealse a lite version of model with the point-encoder finetuned from [Michelangelo](https://github.com/NeuralCarver/Michelangelo).
55
+
56
+ To download the model, first install the huggingface-cli. (Detailed instructions are available [here](https://huggingface.co/docs/huggingface_hub/guides/cli).)
57
+
58
+ ```shell
59
+ python3 -m pip install "huggingface_hub[cli]"
60
+ ```
61
+
62
+ Then download the model using the following commands:
63
+
64
+ ```shell
65
+ mkdir weights
66
+ huggingface-cli download whaohan/bpt --local-dir ./weights
67
+ ```
68
+
69
+ #### Inference conditioned on point clouds
70
+ For text to 3d generation, we supports bilingual Chinese and English, you can use the following command to inference.
71
+ ```python
72
+ python main.py \
73
+ --config 'config/BPT-open-8k-8-16.yaml' \
74
+ --model_path /path/to/model/ckpt \
75
+ --output_path output/ \
76
+ --batch_size 1 \
77
+ --temperature 0.5 \
78
+ --input_type mesh \
79
+ --input_dir /path/to/your/dense/meshes
80
+ ```
81
+ It requires ~12GB VRAM to run with fp16 precision. It takes averagely 2mins to generate a single mesh.
82
+
83
+
84
+ #### Evaluation
85
+
86
+ ```bash
87
+ python metrics.py \
88
+ --input_dir /path/to/dense/meshes \
89
+ --output_dir /path/to/output/meshes
90
+ ```
91
+
92
+ ### Acknowledgement
93
+
94
+ - [MeshGPT](https://github.com/lucidrains/meshgpt-pytorch)
95
+ - [PivotMesh](https://github.com/whaohan/pivotmesh)
96
+ - [Michelangelo](https://github.com/NeuralCarver/Michelangelo)
97
+ - [MeshAnything](https://github.com/buaacyw/MeshAnythingV2/)
98
+ - [MeshXL](https://github.com/OpenMeshLab/MeshXL/)
99
+
100
+
101
+ ## Citation
102
+
103
+ If you found this repository helpful, please cite our report:
104
+ ```bibtex
105
+ @article{weng2024scaling,
106
+ title={Scaling Mesh Generation via Compressive Tokenization},
107
+ author={Haohan Weng and Zibo Zhao and Biwen Lei and Xianghui Yang and Jian Liu and Zeqiang Lai and Zhuo Chen and Yuhong Liu and Jie Jiang and Chunchao Guo and Tong Zhang and Shenghua Gao and C. L. Philip Chen},
108
+ journal={arXiv preprint arXiv:2411.07025},
109
+ year={2024}
110
+ }
111
+ ```
app.py ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from model.data_utils import to_mesh
2
+ from model.serializaiton import BPT_deserialize
3
+ import spaces
4
+ import os
5
+ import torch
6
+ import trimesh
7
+ from accelerate.utils import set_seed
8
+ import numpy as np
9
+ import gradio as gr
10
+ import time
11
+ import matplotlib.pyplot as plt
12
+ from mpl_toolkits.mplot3d.art3d import Poly3DCollection
13
+ from matplotlib.animation import FuncAnimation
14
+ import yaml
15
+ from huggingface_hub import snapshot_download
16
+ from model.model import MeshTransformer
17
+ from utils import apply_normalize, joint_filter, sample_pc
18
+
19
+
20
+ CONFIG_PATH = 'config/BPT-open-8k-8-16.yaml'
21
+ with open(CONFIG_PATH, "r") as f:
22
+ config = yaml.load(f, Loader=yaml.FullLoader)
23
+
24
+
25
+ def download_models():
26
+ os.makedirs("weights", exist_ok=True)
27
+ try:
28
+ snapshot_download(
29
+ repo_id="whaohan/bpt",
30
+ local_dir="./weights",
31
+ resume_download=True
32
+ )
33
+ print("Successfully downloaded Hunyuan3D-1 model")
34
+ except Exception as e:
35
+ print(f"Error downloading Hunyuan3D-1: {e}")
36
+
37
+ model_path = 'weights/bpt-8-16-500m.pt'
38
+ return model_path
39
+
40
+ MODEL_PATH = download_models()
41
+
42
+
43
+ # prepare model with fp16 precision
44
+ model = MeshTransformer(
45
+ dim = config['dim'],
46
+ attn_depth = config['depth'],
47
+ max_seq_len = config['max_seq_len'],
48
+ dropout = config['dropout'],
49
+ mode = config['mode'],
50
+ num_discrete_coors= 2**int(config['quant_bit']),
51
+ block_size = config['block_size'],
52
+ offset_size = config['offset_size'],
53
+ conditioned_on_pc = config['conditioned_on_pc'],
54
+ use_special_block = config['use_special_block'],
55
+ encoder_name = config['encoder_name'],
56
+ encoder_freeze = config['encoder_freeze'],
57
+ )
58
+ model.load(MODEL_PATH)
59
+ model = model.eval()
60
+ model = model.half()
61
+ model = model.cuda()
62
+ device = torch.device('cuda')
63
+ print('Model loaded')
64
+
65
+
66
+ def create_animation(mesh):
67
+ mesh.vertices = mesh.vertices[:, [2, 0, 1]]
68
+
69
+ bounding_box = mesh.bounds
70
+ center = mesh.centroid
71
+ scale = np.ptp(bounding_box, axis=0).max()
72
+
73
+ fig = plt.figure(figsize=(10, 10))
74
+
75
+ ax = fig.add_subplot(111, projection='3d')
76
+ ax.set_axis_off()
77
+
78
+ # Extract vertices and faces for plotting
79
+ vertices = mesh.vertices
80
+ faces = mesh.faces
81
+
82
+ # Plot faces
83
+ ax.add_collection3d(Poly3DCollection(
84
+ vertices[faces] * 1.4,
85
+ facecolors=[120/255, 154/255, 192/255, 255/255],
86
+ edgecolors='k',
87
+ linewidths=0.5,
88
+ ))
89
+
90
+ # Set limits and center the view on the object
91
+ ax.set_xlim(center[0] - scale / 2, center[0] + scale / 2)
92
+ ax.set_ylim(center[1] - scale / 2, center[1] + scale / 2)
93
+ ax.set_zlim(center[2] - scale / 2, center[2] + scale / 2)
94
+
95
+ # Function to update the view angle
96
+ def update_view(num, ax):
97
+ ax.view_init(elev=20, azim=num)
98
+ return ax,
99
+
100
+ # Create the animation
101
+ ani = FuncAnimation(fig, update_view, frames=np.arange(0, 360, 10), interval=100, fargs=(ax,), blit=False)
102
+
103
+ # Save the animation as a GIF
104
+ output_path = f'model_{int(time.time())}.gif'
105
+ ani.save(output_path, writer='pillow', fps=10)
106
+
107
+ # Close the figure
108
+ plt.close(fig)
109
+
110
+ return output_path
111
+
112
+
113
+ @spaces.GPU(duration=480)
114
+ def do_inference(input_3d, sample_seed=0, temperature=0.5, top_k_value=50, top_p_value=0.9):
115
+ print('Start Inference')
116
+ set_seed(sample_seed)
117
+ print("Seed value:", sample_seed)
118
+
119
+ mesh = trimesh.load(input_3d, force='mesh')
120
+ mesh = apply_normalize(mesh)
121
+ pc_normal = sample_pc(mesh, pc_num=4096, with_normal=True)
122
+ vertices = mesh.vertices
123
+
124
+ pc_coor = pc_normal[:, :3]
125
+ normals = pc_normal[:, 3:]
126
+ assert (np.linalg.norm(normals, axis=-1) > 0.99).all(), "normals should be unit vectors, something wrong"
127
+ normalized_pc_normal = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16)
128
+ input = torch.tensor(normalized_pc_normal, dtype=torch.float16, device=device)[None]
129
+ print("Data loaded")
130
+
131
+ with torch.no_grad():
132
+ code = model.generate(
133
+ batch_size = 1,
134
+ temperature = temperature,
135
+ pc = input,
136
+ filter_logits_fn = joint_filter,
137
+ filter_kwargs = dict(k=top_k_value, p=top_p_value),
138
+ return_codes=True,
139
+ )[0]
140
+
141
+ print("Model inference done")
142
+
143
+ # convert to mesh
144
+ code = code[code != model.pad_id].cpu().numpy()
145
+ vertices = BPT_deserialize(
146
+ code,
147
+ block_size = model.block_size,
148
+ offset_size = model.offset_size,
149
+ use_special_block = model.use_special_block,
150
+ )
151
+ faces = torch.arange(1, len(vertices) + 1).view(-1, 3)
152
+ artist_mesh = to_mesh(vertices, faces, transpose=False, post_process=True)
153
+
154
+ # add color for visualization
155
+ num_faces = len(artist_mesh.faces)
156
+ face_color = np.array([120, 154, 192, 255], dtype=np.uint8)
157
+ face_colors = np.tile(face_color, (num_faces, 1))
158
+ artist_mesh.visual.face_colors = face_colors
159
+
160
+ # add time stamp to avoid cache
161
+ save_name = f"output_{int(time.time())}.obj"
162
+ artist_mesh.export(save_name)
163
+ output_render = create_animation(artist_mesh)
164
+ return save_name, output_render
165
+
166
+
167
+ _HEADER_ = '''
168
+ <h2><b>Official 🤗 Gradio Demo for Paper</b> <a href='https://github.com/whaohan/bpt' target='_blank'><b>Scaling Mesh Generation with Compressive Tokenization</b></a></h2>
169
+ '''
170
+
171
+ _CITE_ = r"""
172
+ If you found our model is helpful, please help to ⭐ the <a href='https://github.com/whaohan/bpt' target='_blank'>Github Repo</a>. Code: <a href='https://github.com/whaohan/bpt' target='_blank'>GitHub</a>. Arxiv Paper: <a href='https://arxiv.org/abs/2411.07025' target='_blank'>ArXiv</a>.
173
+
174
+ 📧 **Contact**
175
+ If you have any questions, feel free to contact <a href='https://whaohan.github.io' target='_blank'>Haohan Weng</a>.
176
+ """
177
+
178
+ output_model_obj = gr.Model3D(
179
+ label="Generated Mesh (OBJ Format)",
180
+ display_mode="wireframe",
181
+ scale = 2,
182
+ )
183
+
184
+ output_image_render = gr.Image(
185
+ label="Wireframe Render of Generated Mesh",
186
+ scale = 1,
187
+ )
188
+
189
+ with gr.Blocks() as demo:
190
+ gr.Markdown(_HEADER_)
191
+ with gr.Row(variant="panel"):
192
+ with gr.Column(scale=1):
193
+ with gr.Row():
194
+ input_3d = gr.Model3D(
195
+ label="Input Mesh",
196
+ )
197
+
198
+ # with gr.Row():
199
+ # # with gr.Group():
200
+ with gr.Row():
201
+ sample_seed = gr.Number(value=0, label="Seed Value", precision=0)
202
+ temperature = gr.Number(value=0.5, label="Temperature For Sampling", precision=None)
203
+ with gr.Row():
204
+ top_k_value = gr.Number(value=50, label="TopK For Sampling", precision=0)
205
+ top_p_value = gr.Number(value=0.9, label="TopP For Sampling", precision=None)
206
+
207
+ with gr.Row():
208
+ submit = gr.Button("Generate", elem_id="generate", variant="primary")
209
+
210
+ with gr.Row(variant="panel"):
211
+ mesh_examples = gr.Examples(
212
+ examples=[
213
+ os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
214
+ ],
215
+ inputs=input_3d,
216
+ outputs=[output_model_obj, output_image_render],
217
+ fn=do_inference,
218
+ cache_examples = False,
219
+ examples_per_page=10
220
+ )
221
+
222
+ with gr.Row():
223
+ gr.Markdown('''Try different <b>Seed Value</b> or <b>Temperature</b> if the result is unsatisfying''')
224
+
225
+ with gr.Column(scale=2):
226
+ with gr.Row(equal_height=True):
227
+ output_model_obj.render()
228
+ output_image_render.render()
229
+
230
+
231
+ gr.Markdown(_CITE_)
232
+
233
+ mv_images = gr.State()
234
+
235
+ submit.click(
236
+ fn=do_inference,
237
+ inputs=[input_3d, sample_seed, temperature, top_k_value, top_p_value],
238
+ outputs = [output_model_obj, output_image_render],
239
+ )
240
+
241
+
242
+ demo.launch(share=True)
243
+
assets/BPT.png ADDED
assets/teaser.png ADDED

Git LFS Details

  • SHA256: ffc0a2389ee3e3e110cef966c99dd814a128545b99f64428cb828e91b1f80385
  • Pointer size: 132 Bytes
  • Size of remote file: 3.31 MB
config/BPT-open-8k-8-16.yaml ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ exp_name: 'BPT-open-8k-8-16'
2
+ logdir: '/path/to/log'
3
+
4
+ # condition
5
+ conditioned_on_pc: True
6
+ encoder_name: miche-256-feature
7
+ encoder_freeze: False
8
+ pc_num: 4096
9
+
10
+ # representation config
11
+ use_special_block: True
12
+ block_compression: True
13
+ block_size: 8
14
+ offset_size: 16
15
+ quant_bit: 7
16
+
17
+ # architecture
18
+ mode: 'vertices'
19
+ dim: 1024
20
+ depth: 24
21
+ dropout: 0.0
22
+ max_seq_len: 10000
examples/AdventureYouth.glb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec1363c63948a23fe23173ecd0213dbab3e9e2990b9e4ea8edbe134603e6dd72
3
+ size 15541388
examples/Astrologers.glb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dc3d04b0c72046984d11bd6341460d116e4aeb50928a6f0378ba1b35bc6e16d
3
+ size 13683660
examples/Sheep.glb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62d36605fca89e316e2a0d8793ecde7a7c46fbdaabc11e80c84b6895586c39fa
3
+ size 15001112
examples/Spider.glb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cbf4e9ec33dacd139c756431b017f7cb79e77d041a60981aa7767b3c651f6eb
3
+ size 16531988
main.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import yaml
2
+ import torch
3
+ import os
4
+ import argparse
5
+ import trimesh
6
+ import numpy as np
7
+ from model.serializaiton import BPT_deserialize
8
+ from model.model import MeshTransformer
9
+ from utils import joint_filter, Dataset
10
+ from model.data_utils import to_mesh
11
+
12
+ # prepare arguments
13
+ parser = argparse.ArgumentParser()
14
+ parser.add_argument('--config', type=str, default='config/BPT-pc-open-8k-8-16.yaml')
15
+ parser.add_argument('--model_path', type=str)
16
+ parser.add_argument('--input_dir', default=None, type=str)
17
+ parser.add_argument('--input_path', default=None, type=str)
18
+ parser.add_argument('--out_dir', default="output", type=str)
19
+ parser.add_argument('--input_type', choices=['mesh','pc_normal'], default='mesh')
20
+ parser.add_argument('--output_path', type=str, default='output')
21
+ parser.add_argument('--batch_size', type=int, default=1)
22
+ parser.add_argument('--temperature', type=float, default=0.5) # key sampling parameter
23
+ parser.add_argument('--condition', type=str, default='pc')
24
+ args = parser.parse_args()
25
+
26
+
27
+ if __name__ == '__main__':
28
+ with open(args.config, "r") as f:
29
+ config = yaml.load(f, Loader=yaml.FullLoader)
30
+
31
+ # prepare model with fp16 precision
32
+ model = MeshTransformer(
33
+ dim = config['dim'],
34
+ attn_depth = config['depth'],
35
+ max_seq_len = config['max_seq_len'],
36
+ dropout = config['dropout'],
37
+ mode = config['mode'],
38
+ num_discrete_coors= 2**int(config['quant_bit']),
39
+ block_size = config['block_size'],
40
+ offset_size = config['offset_size'],
41
+ conditioned_on_pc = config['conditioned_on_pc'],
42
+ use_special_block = config['use_special_block'],
43
+ encoder_name = config['encoder_name'],
44
+ encoder_freeze = config['encoder_freeze'],
45
+ )
46
+ model.load(args.model_path)
47
+ model = model.eval()
48
+ model = model.half()
49
+ model = model.cuda()
50
+ num_params = sum([param.nelement() for param in model.decoder.parameters()])
51
+ print('Number of parameters: %.2f M' % (num_params / 1e6))
52
+ print(f'Block Size: {model.block_size} | Offset Size: {model.offset_size}')
53
+
54
+ # prepare data
55
+ if args.input_dir is not None:
56
+ input_list = sorted(os.listdir(args.input_dir))
57
+ if args.input_type == 'pc_normal':
58
+ # npy file with shape (n, 6):
59
+ # point_cloud (n, 3) + normal (n, 3)
60
+ input_list = [os.path.join(args.input_dir, x) for x in input_list if x.endswith('.npy')]
61
+ else:
62
+ # mesh file (e.g., obj, ply, glb)
63
+ input_list = [os.path.join(args.input_dir, x) for x in input_list]
64
+ dataset = Dataset(args.input_type, input_list)
65
+
66
+ elif args.input_path is not None:
67
+ dataset = Dataset(args.input_type, [args.input_path])
68
+
69
+ else:
70
+ raise ValueError("input_dir or input_path must be provided.")
71
+
72
+ dataloader = torch.utils.data.DataLoader(
73
+ dataset,
74
+ batch_size=args.batch_size,
75
+ drop_last = False,
76
+ shuffle = False,
77
+ )
78
+
79
+ os.makedirs(args.output_path, exist_ok=True)
80
+ with torch.no_grad():
81
+ for it, data in enumerate(dataloader):
82
+ if args.condition == 'pc':
83
+ # generate codes with model
84
+ codes = model.generate(
85
+ batch_size = args.batch_size,
86
+ temperature = args.temperature,
87
+ pc = data['pc_normal'].cuda().half(),
88
+ filter_logits_fn = joint_filter,
89
+ filter_kwargs = dict(k=50, p=0.95),
90
+ return_codes=True,
91
+ )
92
+
93
+ coords = []
94
+ try:
95
+ # decoding codes to coordinates
96
+ for i in range(len(codes)):
97
+ code = codes[i]
98
+ code = code[code != model.pad_id].cpu().numpy()
99
+ vertices = BPT_deserialize(
100
+ code,
101
+ block_size = model.block_size,
102
+ offset_size = model.offset_size,
103
+ use_special_block = model.use_special_block,
104
+ )
105
+ coords.append(vertices)
106
+ except:
107
+ coords.append(np.zeros(3, 3))
108
+
109
+ # convert coordinates to mesh
110
+ for i in range(args.batch_size):
111
+ uid = data['uid'][i]
112
+ vertices = coords[i]
113
+ faces = torch.arange(1, len(vertices) + 1).view(-1, 3)
114
+ mesh = to_mesh(vertices, faces, transpose=False, post_process=True)
115
+ num_faces = len(mesh.faces)
116
+ # set the color for mesh
117
+ face_color = np.array([120, 154, 192, 255], dtype=np.uint8)
118
+ face_colors = np.tile(face_color, (num_faces, 1))
119
+ mesh.visual.face_colors = face_colors
120
+ mesh.export(f'{args.output_path}/{uid}_mesh.obj')
121
+
122
+ # save pc
123
+ if args.condition == 'pc':
124
+ pcd = data['pc_normal'][i].cpu().numpy()
125
+ point_cloud = trimesh.points.PointCloud(pcd[..., 0:3])
126
+ point_cloud.export(f'{args.output_path}/{uid}_pc.ply', "ply")
metrics.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from tqdm import tqdm
3
+ import point_cloud_utils as pcu
4
+ from utils import sample_pc
5
+ import argparse
6
+
7
+ # prepare augments
8
+ parser = argparse.ArgumentParser()
9
+ parser.add_argument('--input_dir', type=str) # directory of dense meshes
10
+ parser.add_argument('--output_dir', type=str) # directory of generated meshes
11
+ args = parser.parse_args()
12
+
13
+
14
+ def main(sample_dir, ref_dir, pc_num=1024):
15
+ print(sample_dir, ref_dir)
16
+ mesh_list = [name for name in os.listdir(ref_dir) if name.endswith('.obj')]
17
+
18
+ hausdorff_dists, chamfer_dists = [], []
19
+ for mesh_name in tqdm(mesh_list):
20
+ try:
21
+ # sample point cloud from input
22
+ uid = os.path.splitext(mesh_name)[0]
23
+ ref_path = os.path.join(ref_dir, uid + '.obj')
24
+ sample_path = os.path.join(sample_dir, uid + '.obj')
25
+ sample, ref = sample_pc(sample_path, pc_num), sample_pc(ref_path, pc_num)
26
+
27
+ # compute hausdorff and chamfer distance
28
+ hausdorff_dist = pcu.hausdorff_distance(sample, ref)
29
+ chamfer_dist = pcu.chamfer_distance(sample, ref)
30
+ hausdorff_dists.append(hausdorff_dist)
31
+ chamfer_dists.append(chamfer_dist)
32
+ except Exception as e:
33
+ print(e)
34
+
35
+ print('hausdorff distance:', sum(hausdorff_dists) / len(hausdorff_dists))
36
+ print('chamfer distance:', sum(chamfer_dists) / len(chamfer_dists))
37
+
38
+
39
+ main(args.input_dir, args.output_dir)
miche/.DS_Store ADDED
Binary file (6.15 kB). View file
 
miche/LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
miche/__init__.py ADDED
File without changes
miche/encode.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ import argparse
3
+ from omegaconf import OmegaConf
4
+ import numpy as np
5
+ import torch
6
+ from .michelangelo.utils.misc import instantiate_from_config
7
+
8
+ def load_surface(fp):
9
+
10
+ with np.load(fp) as input_pc:
11
+ surface = input_pc['points']
12
+ normal = input_pc['normals']
13
+
14
+ rng = np.random.default_rng()
15
+ ind = rng.choice(surface.shape[0], 4096, replace=False)
16
+ surface = torch.FloatTensor(surface[ind])
17
+ normal = torch.FloatTensor(normal[ind])
18
+
19
+ surface = torch.cat([surface, normal], dim=-1).unsqueeze(0).cuda()
20
+
21
+ return surface
22
+
23
+ def reconstruction(args, model, bounds=(-1.25, -1.25, -1.25, 1.25, 1.25, 1.25), octree_depth=7, num_chunks=10000):
24
+
25
+ surface = load_surface(args.pointcloud_path)
26
+ # old_surface = surface.clone()
27
+
28
+ # surface[0,:,0]*=-1
29
+ # surface[0,:,1]*=-1
30
+ surface[0,:,2]*=-1
31
+
32
+ # encoding
33
+ shape_embed, shape_latents = model.model.encode_shape_embed(surface, return_latents=True)
34
+ shape_zq, posterior = model.model.shape_model.encode_kl_embed(shape_latents)
35
+
36
+ # decoding
37
+ latents = model.model.shape_model.decode(shape_zq)
38
+ # geometric_func = partial(model.model.shape_model.query_geometry, latents=latents)
39
+
40
+ return 0
41
+
42
+ def load_model(ckpt_path="miche/shapevae-256.ckpt", config_path="miche/shapevae-256.yaml"):
43
+ model_config = OmegaConf.load(config_path)
44
+ # print(model_config)
45
+ if hasattr(model_config, "model"):
46
+ model_config = model_config.model
47
+
48
+ model = instantiate_from_config(model_config, ckpt_path=ckpt_path)
49
+ model = model.eval()
50
+
51
+ return model
52
+ if __name__ == "__main__":
53
+ '''
54
+ 1. Reconstruct point cloud
55
+ 2. Image-conditioned generation
56
+ 3. Text-conditioned generation
57
+ '''
58
+ parser = argparse.ArgumentParser()
59
+ parser.add_argument("--config_path", type=str, required=True)
60
+ parser.add_argument("--ckpt_path", type=str, required=True)
61
+ parser.add_argument("--pointcloud_path", type=str, default='./example_data/surface.npz',
62
+ help='Path to the input point cloud')
63
+ parser.add_argument("--image_path", type=str, help='Path to the input image')
64
+ parser.add_argument("--text", type=str,
65
+ help='Input text within a format: A 3D model of motorcar; Porsche 911.')
66
+ parser.add_argument("--output_dir", type=str, default='./output')
67
+ parser.add_argument("-s", "--seed", type=int, default=0)
68
+ args = parser.parse_args()
69
+
70
+ print(f'-----------------------------------------------------------------------------')
71
+ print(f'>>> Output directory: {args.output_dir}')
72
+ print(f'-----------------------------------------------------------------------------')
73
+
74
+ reconstruction(args, load_model(args))
miche/michelangelo/.DS_Store ADDED
Binary file (6.15 kB). View file
 
miche/michelangelo/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ # -*- coding: utf-8 -*-
miche/michelangelo/graphics/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ # -*- coding: utf-8 -*-
miche/michelangelo/graphics/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (180 Bytes). View file
 
miche/michelangelo/graphics/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (180 Bytes). View file
 
miche/michelangelo/graphics/primitives/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ from .volume import generate_dense_grid_points
4
+
miche/michelangelo/graphics/primitives/volume.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import numpy as np
4
+
5
+ # produce dense points
6
+ def generate_dense_grid_points(bbox_min: np.ndarray,
7
+ bbox_max: np.ndarray,
8
+ octree_depth: int,
9
+ indexing: str = "ij"):
10
+ length = bbox_max - bbox_min
11
+ num_cells = np.exp2(octree_depth)
12
+ x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
13
+ y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
14
+ z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
15
+ [xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
16
+ xyz = np.stack((xs, ys, zs), axis=-1)
17
+ xyz = xyz.reshape(-1, 3)
18
+ grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
19
+
20
+ return xyz, grid_size, length
21
+
miche/michelangelo/models/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ # -*- coding: utf-8 -*-
miche/michelangelo/models/modules/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ from .checkpoint import checkpoint
miche/michelangelo/models/modules/checkpoint.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import torch
4
+ from typing import Callable, Iterable, Sequence, Union
5
+
6
+
7
+ def checkpoint(
8
+ func: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor]]],
9
+ inputs: Sequence[torch.Tensor],
10
+ params: Iterable[torch.Tensor],
11
+ flag: bool,
12
+ use_deepspeed: bool = False
13
+ ):
14
+ # Evaluate a function without caching intermediate activations, allowing for
15
+ # reduced memory at the expense of extra compute in the backward pass.
16
+ # :param func: the function to evaluate.
17
+ # :param inputs: the argument sequence to pass to `func`.
18
+ # :param params: a sequence of parameters `func` depends on but does not
19
+ # explicitly take as arguments.
20
+ # :param flag: if False, disable gradient checkpointing.
21
+ # :param use_deepspeed: if True, use deepspeed
22
+ if flag:
23
+ if use_deepspeed:
24
+ import deepspeed
25
+ return deepspeed.checkpointing.checkpoint(func, *inputs)
26
+
27
+ args = tuple(inputs) + tuple(params)
28
+ return CheckpointFunction.apply(func, len(inputs), *args)
29
+ else:
30
+ return func(*inputs)
31
+
32
+
33
+ class CheckpointFunction(torch.autograd.Function):
34
+ @staticmethod
35
+ @torch.cuda.amp.custom_fwd
36
+ def forward(ctx, run_function, length, *args):
37
+ ctx.run_function = run_function
38
+ ctx.input_tensors = list(args[:length])
39
+ ctx.input_params = list(args[length:])
40
+
41
+ with torch.no_grad():
42
+ output_tensors = ctx.run_function(*ctx.input_tensors)
43
+ return output_tensors
44
+
45
+ @staticmethod
46
+ @torch.cuda.amp.custom_bwd
47
+ def backward(ctx, *output_grads):
48
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
49
+ with torch.enable_grad():
50
+ # Fixes a bug where the first op in run_function modifies the
51
+ # Tensor storage in place, which is not allowed for detach()'d
52
+ # Tensors.
53
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
54
+ output_tensors = ctx.run_function(*shallow_copies)
55
+ input_grads = torch.autograd.grad(
56
+ output_tensors,
57
+ ctx.input_tensors + ctx.input_params,
58
+ output_grads,
59
+ allow_unused=True,
60
+ )
61
+ del ctx.input_tensors
62
+ del ctx.input_params
63
+ del output_tensors
64
+ return (None, None) + input_grads
miche/michelangelo/models/modules/distributions.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import torch
4
+ import numpy as np
5
+ from typing import Union, List
6
+
7
+
8
+ class DiagonalGaussianDistribution(object):
9
+ # Gaussian distribution
10
+ def __init__(self, parameters: Union[torch.Tensor, List[torch.Tensor]], deterministic=False, feat_dim=1):
11
+ self.feat_dim = feat_dim
12
+ self.parameters = parameters
13
+
14
+ if isinstance(parameters, list):
15
+ self.mean = parameters[0]
16
+ self.logvar = parameters[1]
17
+ else:
18
+ self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim)
19
+
20
+ self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
21
+ self.deterministic = deterministic
22
+ self.std = torch.exp(0.5 * self.logvar)
23
+ self.var = torch.exp(self.logvar)
24
+ if self.deterministic:
25
+ self.var = self.std = torch.zeros_like(self.mean)
26
+
27
+ # sample from the guassian distribution
28
+ def sample(self):
29
+ x = self.mean + self.std * torch.randn_like(self.mean)
30
+ return x
31
+
32
+ def kl(self, other=None, dims=(1, 2, 3)):
33
+ if self.deterministic:
34
+ return torch.Tensor([0.])
35
+ else:
36
+ if other is None:
37
+ return 0.5 * torch.mean(torch.pow(self.mean, 2)
38
+ + self.var - 1.0 - self.logvar,
39
+ dim=dims)
40
+ else:
41
+ return 0.5 * torch.mean(
42
+ torch.pow(self.mean - other.mean, 2) / other.var
43
+ + self.var / other.var - 1.0 - self.logvar + other.logvar,
44
+ dim=dims)
45
+
46
+ def nll(self, sample, dims=(1, 2, 3)):
47
+ if self.deterministic:
48
+ return torch.Tensor([0.])
49
+ logtwopi = np.log(2.0 * np.pi)
50
+ return 0.5 * torch.sum(
51
+ logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
52
+ dim=dims)
53
+
54
+ def mode(self):
55
+ return self.mean
56
+
57
+
58
+ def normal_kl(mean1, logvar1, mean2, logvar2):
59
+ # Compute the KL divergence between two gaussians.
60
+ # Shapes are automatically broadcasted, so batches can be compared to
61
+ # scalars, among other use cases.
62
+
63
+ tensor = None
64
+ for obj in (mean1, logvar1, mean2, logvar2):
65
+ if isinstance(obj, torch.Tensor):
66
+ tensor = obj
67
+ break
68
+ assert tensor is not None, "at least one argument must be a Tensor"
69
+
70
+ # Force variances to be Tensors. Broadcasting helps convert scalars to
71
+ # Tensors, but it does not work for torch.exp().
72
+ logvar1, logvar2 = [
73
+ x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
74
+ for x in (logvar1, logvar2)
75
+ ]
76
+
77
+ return 0.5 * (
78
+ -1.0
79
+ + logvar2
80
+ - logvar1
81
+ + torch.exp(logvar1 - logvar2)
82
+ + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
83
+ )
miche/michelangelo/models/modules/embedder.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+ import math
7
+
8
+ VALID_EMBED_TYPES = ["identity", "fourier", "hashgrid", "sphere_harmonic", "triplane_fourier"]
9
+
10
+
11
+ class FourierEmbedder(nn.Module):
12
+ """The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
13
+ each feature dimension of `x[..., i]` into:
14
+ [
15
+ sin(x[..., i]),
16
+ sin(f_1*x[..., i]),
17
+ sin(f_2*x[..., i]),
18
+ ...
19
+ sin(f_N * x[..., i]),
20
+ cos(x[..., i]),
21
+ cos(f_1*x[..., i]),
22
+ cos(f_2*x[..., i]),
23
+ ...
24
+ cos(f_N * x[..., i]),
25
+ x[..., i] # only present if include_input is True.
26
+ ], here f_i is the frequency.
27
+
28
+ Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs].
29
+ If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...];
30
+ Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)].
31
+
32
+ Args:
33
+ num_freqs (int): the number of frequencies, default is 6;
34
+ logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
35
+ otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)];
36
+ input_dim (int): the input dimension, default is 3;
37
+ include_input (bool): include the input tensor or not, default is True.
38
+
39
+ Attributes:
40
+ frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
41
+ otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1);
42
+
43
+ out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1),
44
+ otherwise, it is input_dim * num_freqs * 2.
45
+
46
+ """
47
+
48
+ def __init__(self,
49
+ num_freqs: int = 6,
50
+ logspace: bool = True,
51
+ input_dim: int = 3,
52
+ include_input: bool = True,
53
+ include_pi: bool = True) -> None:
54
+
55
+ """The initialization"""
56
+
57
+ super().__init__()
58
+
59
+ if logspace:
60
+ frequencies = 2.0 ** torch.arange(
61
+ num_freqs,
62
+ dtype=torch.float32
63
+ )
64
+ else:
65
+ frequencies = torch.linspace(
66
+ 1.0,
67
+ 2.0 ** (num_freqs - 1),
68
+ num_freqs,
69
+ dtype=torch.float32
70
+ )
71
+
72
+ if include_pi:
73
+ frequencies *= torch.pi
74
+
75
+ self.register_buffer("frequencies", frequencies, persistent=False)
76
+ self.include_input = include_input
77
+ self.num_freqs = num_freqs
78
+
79
+ self.out_dim = self.get_dims(input_dim)
80
+
81
+ def get_dims(self, input_dim):
82
+ temp = 1 if self.include_input or self.num_freqs == 0 else 0
83
+ out_dim = input_dim * (self.num_freqs * 2 + temp)
84
+
85
+ return out_dim
86
+
87
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
88
+ """ Forward process.
89
+
90
+ Args:
91
+ x: tensor of shape [..., dim]
92
+
93
+ Returns:
94
+ embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)]
95
+ where temp is 1 if include_input is True and 0 otherwise.
96
+ """
97
+
98
+ if self.num_freqs > 0:
99
+ embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1)
100
+ if self.include_input:
101
+ return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
102
+ else:
103
+ return torch.cat((embed.sin(), embed.cos()), dim=-1)
104
+ else:
105
+ return x
106
+
107
+
108
+ class LearnedFourierEmbedder(nn.Module):
109
+ """ following @crowsonkb "s lead with learned sinusoidal pos emb """
110
+ """ https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/models/danbooru_128.py#L8 """
111
+
112
+ def __init__(self, in_channels, dim):
113
+ super().__init__()
114
+ assert (dim % 2) == 0
115
+ half_dim = dim // 2
116
+ per_channel_dim = half_dim // in_channels
117
+ self.weights = nn.Parameter(torch.randn(per_channel_dim))
118
+
119
+ def forward(self, x):
120
+ """
121
+
122
+ Args:
123
+ x (torch.FloatTensor): [..., c]
124
+
125
+ Returns:
126
+ x (torch.FloatTensor): [..., d]
127
+ """
128
+
129
+ # [b, t, c, 1] * [1, d] = [b, t, c, d] -> [b, t, c * d]
130
+ freqs = (x[..., None] * self.weights[None] * 2 * np.pi).view(*x.shape[:-1], -1)
131
+ fouriered = torch.cat((x, freqs.sin(), freqs.cos()), dim=-1)
132
+ return fouriered
133
+
134
+
135
+ class TriplaneLearnedFourierEmbedder(nn.Module):
136
+ def __init__(self, in_channels, dim):
137
+ super().__init__()
138
+
139
+ self.yz_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
140
+ self.xz_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
141
+ self.xy_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
142
+
143
+ self.out_dim = in_channels + dim
144
+
145
+ def forward(self, x):
146
+
147
+ yz_embed = self.yz_plane_embedder(x)
148
+ xz_embed = self.xz_plane_embedder(x)
149
+ xy_embed = self.xy_plane_embedder(x)
150
+
151
+ embed = yz_embed + xz_embed + xy_embed
152
+
153
+ return embed
154
+
155
+
156
+ def sequential_pos_embed(num_len, embed_dim):
157
+ assert embed_dim % 2 == 0
158
+
159
+ pos = torch.arange(num_len, dtype=torch.float32)
160
+ omega = torch.arange(embed_dim // 2, dtype=torch.float32)
161
+ omega /= embed_dim / 2.
162
+ omega = 1. / 10000 ** omega # (D/2,)
163
+
164
+ pos = pos.reshape(-1) # (M,)
165
+ out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
166
+
167
+ emb_sin = torch.sin(out) # (M, D/2)
168
+ emb_cos = torch.cos(out) # (M, D/2)
169
+
170
+ embeddings = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
171
+
172
+ return embeddings
173
+
174
+
175
+ def timestep_embedding(timesteps, dim, max_period=10000):
176
+ """
177
+ Create sinusoidal timestep embeddings.
178
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
179
+ These may be fractional.
180
+ :param dim: the dimension of the output.
181
+ :param max_period: controls the minimum frequency of the embeddings.
182
+ :return: an [N x dim] Tensor of positional embeddings.
183
+ """
184
+ half = dim // 2
185
+ freqs = torch.exp(
186
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
187
+ ).to(device=timesteps.device)
188
+ args = timesteps[:, None].to(timesteps.dtype) * freqs[None]
189
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
190
+ if dim % 2:
191
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
192
+ return embedding
193
+
194
+
195
+ def get_embedder(embed_type="fourier", num_freqs=-1, input_dim=3, degree=4,
196
+ num_levels=16, level_dim=2, per_level_scale=2, base_resolution=16,
197
+ log2_hashmap_size=19, desired_resolution=None):
198
+ if embed_type == "identity" or (embed_type == "fourier" and num_freqs == -1):
199
+ return nn.Identity(), input_dim
200
+
201
+ elif embed_type == "fourier":
202
+ embedder_obj = FourierEmbedder(num_freqs=num_freqs, input_dim=input_dim,
203
+ logspace=True, include_input=True)
204
+ return embedder_obj, embedder_obj.out_dim
205
+
206
+ elif embed_type == "hashgrid":
207
+ raise NotImplementedError
208
+
209
+ elif embed_type == "sphere_harmonic":
210
+ raise NotImplementedError
211
+
212
+ else:
213
+ raise ValueError(f"{embed_type} is not valid. Currently only supprts {VALID_EMBED_TYPES}")
miche/michelangelo/models/modules/transformer_blocks.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import math
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from typing import Optional
8
+
9
+ from miche.michelangelo.models.modules.checkpoint import checkpoint
10
+
11
+ # Initialize linear layers with normal distribution weights and zero biases
12
+ def init_linear(l, stddev):
13
+ nn.init.normal_(l.weight, std=stddev)
14
+ if l.bias is not None:
15
+ nn.init.constant_(l.bias, 0.0)
16
+
17
+ # Multihead attention module
18
+ class MultiheadAttention(nn.Module):
19
+ def __init__(
20
+ self,
21
+ *,
22
+ device: torch.device,
23
+ dtype: torch.dtype,
24
+ n_ctx: int, # Context size
25
+ width: int, # Width of the input tensor
26
+ heads: int, # Number of attention heads
27
+ init_scale: float, # Initialization scale for weights
28
+ qkv_bias: bool, # Whether to use bias in QKV layers
29
+ flash: bool = False # Whether to use flash attention
30
+ ):
31
+ super().__init__()
32
+ self.n_ctx = n_ctx
33
+ self.width = width
34
+ self.heads = heads
35
+ self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias, device=device, dtype=dtype)
36
+ self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
37
+ self.attention = QKVMultiheadAttention(device=device, dtype=dtype, heads=heads, n_ctx=n_ctx, flash=flash)
38
+ init_linear(self.c_qkv, init_scale)
39
+ init_linear(self.c_proj, init_scale)
40
+
41
+ def forward(self, x):
42
+ x = self.c_qkv(x)
43
+ x = checkpoint(self.attention, (x,), (), True)
44
+ x = self.c_proj(x)
45
+ return x
46
+
47
+ # QKV multihead attention module
48
+ class QKVMultiheadAttention(nn.Module):
49
+ def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int, flash: bool = False):
50
+ super().__init__()
51
+ self.device = device
52
+ self.dtype = dtype
53
+ self.heads = heads
54
+ self.n_ctx = n_ctx
55
+ self.flash = flash
56
+
57
+ def forward(self, qkv):
58
+ bs, n_ctx, width = qkv.shape
59
+ attn_ch = width // self.heads // 3
60
+ scale = 1 / math.sqrt(math.sqrt(attn_ch))
61
+ qkv = qkv.view(bs, n_ctx, self.heads, -1)
62
+ q, k, v = torch.split(qkv, attn_ch, dim=-1)
63
+
64
+ if self.flash:
65
+ out = F.scaled_dot_product_attention(q, k, v)
66
+ else:
67
+ weight = torch.einsum(
68
+ "bthc,bshc->bhts", q * scale, k * scale
69
+ ) # More stable with f16 than dividing afterwards
70
+ wdtype = weight.dtype
71
+ weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
72
+ out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
73
+
74
+ return out
75
+
76
+ # Residual attention block module
77
+ class ResidualAttentionBlock(nn.Module):
78
+ def __init__(
79
+ self,
80
+ *,
81
+ device: torch.device,
82
+ dtype: torch.dtype,
83
+ use_checkpoint: bool = False,
84
+ n_ctx: int, # Context size
85
+ width: int, # Width of the input tensor
86
+ heads: int, # Number of attention heads
87
+ init_scale: float, # Initialization scale for weights
88
+ qkv_bias: bool, # Whether to use bias in QKV layers
89
+ flash: bool = False # Whether to use flash attention
90
+ ):
91
+ super().__init__()
92
+
93
+ self.use_checkpoint = use_checkpoint
94
+
95
+ self.attn = MultiheadAttention(
96
+ device=device,
97
+ dtype=dtype,
98
+ n_ctx=n_ctx,
99
+ width=width,
100
+ heads=heads,
101
+ init_scale=init_scale,
102
+ qkv_bias=qkv_bias,
103
+ flash=flash
104
+ )
105
+ self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
106
+ self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
107
+ self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype)
108
+
109
+ def _forward(self, x: torch.Tensor):
110
+ x = x + self.attn(self.ln_1(x))
111
+ x = x + self.mlp(self.ln_2(x))
112
+ return x
113
+
114
+ def forward(self, x: torch.Tensor):
115
+ return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
116
+
117
+ # Multihead cross attention module
118
+ class MultiheadCrossAttention(nn.Module):
119
+ def __init__(
120
+ self,
121
+ *,
122
+ device: torch.device,
123
+ dtype: torch.dtype,
124
+ n_data: Optional[int] = None,
125
+ data_width: Optional[int] = None,
126
+ width: int, # Width of the input tensor
127
+ heads: int, # Number of attention heads
128
+ init_scale: float, # Initialization scale for weights
129
+ qkv_bias: bool, # Whether to use bias in QKV layers
130
+ flash: bool = False # Whether to use flash attention
131
+ ):
132
+ super().__init__()
133
+ self.n_data = n_data
134
+ self.width = width
135
+ self.heads = heads
136
+ self.data_width = width if data_width is None else data_width
137
+ self.c_q = nn.Linear(width, width, bias=qkv_bias, device=device, dtype=dtype)
138
+ self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias, device=device, dtype=dtype)
139
+ self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
140
+ self.attention = QKVMultiheadCrossAttention(
141
+ device=device, dtype=dtype, heads=heads, n_data=n_data, flash=flash
142
+ )
143
+ init_linear(self.c_q, init_scale)
144
+ init_linear(self.c_kv, init_scale)
145
+ init_linear(self.c_proj, init_scale)
146
+
147
+ def forward(self, x, data):
148
+ x = self.c_q(x)
149
+ data = self.c_kv(data)
150
+ x = checkpoint(self.attention, (x, data), (), True)
151
+ x = self.c_proj(x)
152
+ return x
153
+
154
+ # QKV multihead cross attention module
155
+ class QKVMultiheadCrossAttention(nn.Module):
156
+ def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int,
157
+ flash: bool = False, n_data: Optional[int] = None):
158
+
159
+ super().__init__()
160
+ self.device = device
161
+ self.dtype = dtype
162
+ self.heads = heads
163
+ self.n_data = n_data
164
+ self.flash = flash
165
+
166
+ def forward(self, q, kv):
167
+ _, n_ctx, _ = q.shape
168
+ bs, n_data, width = kv.shape
169
+ attn_ch = width // self.heads // 2
170
+ scale = 1 / math.sqrt(math.sqrt(attn_ch))
171
+ q = q.view(bs, n_ctx, self.heads, -1)
172
+ kv = kv.view(bs, n_data, self.heads, -1)
173
+ k, v = torch.split(kv, attn_ch, dim=-1)
174
+
175
+ if self.flash:
176
+ out = F.scaled_dot_product_attention(q, k, v)
177
+ else:
178
+ weight = torch.einsum(
179
+ "bthc,bshc->bhts", q * scale, k * scale
180
+ ) # More stable with f16 than dividing afterwards
181
+ wdtype = weight.dtype
182
+ weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
183
+ out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
184
+
185
+ return out
186
+
187
+ # Residual cross attention block module
188
+ class ResidualCrossAttentionBlock(nn.Module):
189
+ def __init__(
190
+ self,
191
+ *,
192
+ device: Optional[torch.device],
193
+ dtype: Optional[torch.dtype],
194
+ n_data: Optional[int] = None,
195
+ data_width: Optional[int] = None,
196
+ width: int, # Width of the input tensor
197
+ heads: int, # Number of attention heads
198
+ init_scale: float, # Initialization scale for weights
199
+ qkv_bias: bool, # Whether to use bias in QKV layers
200
+ flash: bool = False # Whether to use flash attention
201
+ ):
202
+ super().__init__()
203
+
204
+ if data_width is None:
205
+ data_width = width
206
+
207
+ self.attn = MultiheadCrossAttention(
208
+ device=device,
209
+ dtype=dtype,
210
+ n_data=n_data,
211
+ width=width,
212
+ heads=heads,
213
+ data_width=data_width,
214
+ init_scale=init_scale,
215
+ qkv_bias=qkv_bias,
216
+ flash=flash,
217
+ )
218
+ self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
219
+ self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype)
220
+ self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
221
+ self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype)
222
+
223
+ def forward(self, x: torch.Tensor, data: torch.Tensor):
224
+ x = x + self.attn(self.ln_1(x), self.ln_2(data))
225
+ x = x + self.mlp(self.ln_3(x))
226
+ return x
227
+
228
+ # MLP Module
229
+ class MLP(nn.Module):
230
+ def __init__(self, *,
231
+ device: Optional[torch.device],
232
+ dtype: Optional[torch.dtype],
233
+ width: int,
234
+ init_scale: float):
235
+ super().__init__()
236
+ self.width = width
237
+ self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype)
238
+ self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype)
239
+ self.gelu = nn.GELU()
240
+ init_linear(self.c_fc, init_scale)
241
+ init_linear(self.c_proj, init_scale)
242
+
243
+ def forward(self, x):
244
+ return self.c_proj(self.gelu(self.c_fc(x)))
245
+
246
+ # Transformer Module
247
+ class Transformer(nn.Module):
248
+ def __init__(
249
+ self,
250
+ *,
251
+ device: Optional[torch.device],
252
+ dtype: Optional[torch.dtype],
253
+ layers: int,
254
+ use_checkpoint: bool = False,
255
+ n_ctx: int, # Context size
256
+ width: int, # Width of the input tensor
257
+ heads: int, # Number of attention heads
258
+ init_scale: float, # Initialization scale for weights
259
+ qkv_bias: bool, # Whether to use bias in QKV layers
260
+ flash: bool = False # Whether to use flash attention
261
+ ):
262
+ super().__init__()
263
+ self.n_ctx = n_ctx
264
+ self.width = width
265
+ self.layers = layers
266
+ self.resblocks = nn.ModuleList(
267
+ [
268
+ ResidualAttentionBlock(
269
+ device=device,
270
+ dtype=dtype,
271
+ n_ctx=n_ctx,
272
+ width=width,
273
+ heads=heads,
274
+ init_scale=init_scale,
275
+ qkv_bias=qkv_bias,
276
+ flash=flash,
277
+ use_checkpoint=use_checkpoint
278
+ )
279
+ for _ in range(layers)
280
+ ]
281
+ )
282
+
283
+ def forward(self, x: torch.Tensor):
284
+ for block in self.resblocks:
285
+ x = block(x)
286
+ return x
miche/michelangelo/models/tsal/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ # -*- coding: utf-8 -*-
miche/michelangelo/models/tsal/asl_pl_module.py ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ from typing import List, Tuple, Dict, Optional
4
+ from omegaconf import DictConfig
5
+
6
+ import torch
7
+ import torch.nn.functional as F
8
+ from torch import nn
9
+ from torch.optim import lr_scheduler
10
+ from typing import Union
11
+ from functools import partial
12
+
13
+ from miche.michelangelo.utils import instantiate_from_config
14
+
15
+ from .tsal_base import (
16
+ AlignedShapeAsLatentModule,
17
+ ShapeAsLatentModule,
18
+ Latent2MeshOutput,
19
+ AlignedMeshOutput
20
+ )
21
+ from miche.michelangelo.models.tsal.inference_utils import extract_geometry
22
+ import trimesh
23
+
24
+ class AlignedShapeAsLatentPLModule(nn.Module):
25
+ def __init__(self, *,
26
+ shape_module_cfg,
27
+ aligned_module_cfg,
28
+ loss_cfg,
29
+ optimizer_cfg: Optional[DictConfig] = None,
30
+ ckpt_path: Optional[str] = None,
31
+ ignore_keys: Union[Tuple[str], List[str]] = ()):
32
+
33
+ super().__init__()
34
+
35
+ shape_model: ShapeAsLatentModule = instantiate_from_config(
36
+ shape_module_cfg, device=None, dtype=None
37
+ )
38
+ self.model: AlignedShapeAsLatentModule = instantiate_from_config(
39
+ aligned_module_cfg, shape_model=shape_model
40
+ )
41
+
42
+ self.loss = instantiate_from_config(loss_cfg)
43
+
44
+ self.optimizer_cfg = optimizer_cfg
45
+
46
+ if ckpt_path is not None:
47
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
48
+
49
+ def set_shape_model_only(self):
50
+ self.model.set_shape_model_only()
51
+
52
+ @property
53
+ def latent_shape(self):
54
+ return self.model.shape_model.latent_shape
55
+
56
+ @property
57
+ def zero_rank(self):
58
+ if self._trainer:
59
+ zero_rank = self.trainer.local_rank == 0
60
+ else:
61
+ zero_rank = True
62
+
63
+ return zero_rank
64
+
65
+ def init_from_ckpt(self, path, ignore_keys=()):
66
+ state_dict = torch.load(path, map_location="cpu")["state_dict"]
67
+
68
+ keys = list(state_dict.keys())
69
+ for k in keys:
70
+ for ik in ignore_keys:
71
+ if k.startswith(ik):
72
+ print("Deleting key {} from state_dict.".format(k))
73
+ del state_dict[k]
74
+
75
+ missing, unexpected = self.load_state_dict(state_dict, strict=False)
76
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
77
+ if len(missing) > 0:
78
+ print(f"Missing Keys: {missing}")
79
+ print(f"Unexpected Keys: {unexpected}")
80
+
81
+ def configure_optimizers(self) -> Tuple[List, List]:
82
+ lr = self.learning_rate
83
+
84
+ trainable_parameters = list(self.model.parameters())
85
+
86
+ if self.optimizer_cfg is None:
87
+ optimizers = [torch.optim.AdamW(trainable_parameters, lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
88
+ schedulers = []
89
+ else:
90
+ optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=trainable_parameters)
91
+ scheduler_func = instantiate_from_config(
92
+ self.optimizer_cfg.scheduler,
93
+ max_decay_steps=self.trainer.max_steps,
94
+ lr_max=lr
95
+ )
96
+ scheduler = {
97
+ "scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
98
+ "interval": "step",
99
+ "frequency": 1
100
+ }
101
+ optimizers = [optimizer]
102
+ schedulers = [scheduler]
103
+
104
+ return optimizers, schedulers
105
+
106
+ def forward(self,
107
+ surface: torch.FloatTensor,
108
+ image: torch.FloatTensor,
109
+ text: torch.FloatTensor,
110
+ volume_queries: torch.FloatTensor):
111
+ # Args:
112
+ # surface (torch.FloatTensor):
113
+ # image (torch.FloatTensor):
114
+ # text (torch.FloatTensor):
115
+ # volume_queries (torch.FloatTensor):
116
+ #
117
+ # Returns:
118
+
119
+ embed_outputs, shape_z = self.model(surface, image, text)
120
+
121
+ shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_z)
122
+ latents = self.model.shape_model.decode(shape_zq)
123
+ logits = self.model.shape_model.query_geometry(volume_queries, latents)
124
+
125
+ return embed_outputs, logits, posterior
126
+
127
+ def encode(self, surface: torch.FloatTensor, sample_posterior=True):
128
+
129
+ pc = surface[..., 0:3]
130
+ feats = surface[..., 3:6]
131
+
132
+ shape_embed, shape_zq, posterior = self.model.shape_model.encode(
133
+ pc=pc, feats=feats, sample_posterior=sample_posterior
134
+ )
135
+
136
+ return shape_zq
137
+
138
+ def encode_latents(self, surface: torch.FloatTensor):
139
+
140
+ pc = surface[..., 0:3]
141
+ feats = surface[..., 3:6]
142
+
143
+ shape_embed, shape_latents = self.model.shape_model.encode_latents(
144
+ pc=pc, feats=feats
145
+ )
146
+ shape_embed = shape_embed.unsqueeze(1)
147
+ assert shape_embed.shape[1] == 1 and shape_latents.shape[1] == 256
148
+ cat_latents = torch.cat([shape_embed, shape_latents], dim=1)
149
+
150
+ return cat_latents
151
+
152
+ def recon(self, surface):
153
+ cat_latents = self.encode_latents(surface)
154
+ shape_latents = cat_latents[:, 1:]
155
+ shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_latents)
156
+
157
+ # decoding
158
+ latents = self.model.shape_model.decode(shape_zq)
159
+ geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
160
+
161
+ # reconstruction
162
+ mesh_v_f, has_surface = extract_geometry(
163
+ geometric_func=geometric_func,
164
+ device=surface.device,
165
+ batch_size=surface.shape[0],
166
+ bounds=(-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
167
+ octree_depth=7,
168
+ num_chunks=10000,
169
+ )
170
+ recon_mesh = trimesh.Trimesh(mesh_v_f[0][0], mesh_v_f[0][1])
171
+
172
+ return recon_mesh
173
+
174
+
175
+ def to_shape_latents(self, latents):
176
+
177
+ shape_zq, posterior = self.model.shape_model.encode_kl_embed(latents, sample_posterior = False)
178
+ return self.model.shape_model.decode(shape_zq)
179
+
180
+ def decode(self,
181
+ z_q,
182
+ bounds: Union[Tuple[float], List[float], float] = 1.1,
183
+ octree_depth: int = 7,
184
+ num_chunks: int = 10000) -> List[Latent2MeshOutput]:
185
+
186
+ latents = self.model.shape_model.decode(z_q) # latents: [bs, num_latents, dim]
187
+ outputs = self.latent2mesh(latents, bounds=bounds, octree_depth=octree_depth, num_chunks=num_chunks)
188
+
189
+ return outputs
190
+
191
+ def training_step(self, batch: Dict[str, torch.FloatTensor],
192
+ batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
193
+ #Args:
194
+ # batch (dict): the batch sample, and it contains:
195
+ # - surface (torch.FloatTensor): [bs, n_surface, (3 + input_dim)]
196
+ # - image (torch.FloatTensor): [bs, 3, 224, 224]
197
+ # - text (torch.FloatTensor): [bs, num_templates, 77]
198
+ # - geo_points (torch.FloatTensor): [bs, n_pts, (3 + 1)]
199
+ #
200
+ # batch_idx (int):
201
+ #
202
+ # optimizer_idx (int):
203
+ #
204
+ # Returns:
205
+ # loss (torch.FloatTensor):
206
+
207
+ surface = batch["surface"]
208
+ image = batch["image"]
209
+ text = batch["text"]
210
+
211
+ volume_queries = batch["geo_points"][..., 0:3]
212
+ shape_labels = batch["geo_points"][..., -1]
213
+
214
+ embed_outputs, shape_logits, posteriors = self(surface, image, text, volume_queries)
215
+
216
+ aeloss, log_dict_ae = self.loss(
217
+ **embed_outputs,
218
+ posteriors=posteriors,
219
+ shape_logits=shape_logits,
220
+ shape_labels=shape_labels,
221
+ split="train"
222
+ )
223
+
224
+ self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=shape_logits.shape[0],
225
+ sync_dist=False, rank_zero_only=True)
226
+
227
+ return aeloss
228
+
229
+ def validation_step(self, batch: Dict[str, torch.FloatTensor], batch_idx: int) -> torch.FloatTensor:
230
+
231
+ surface = batch["surface"]
232
+ image = batch["image"]
233
+ text = batch["text"]
234
+
235
+ volume_queries = batch["geo_points"][..., 0:3]
236
+ shape_labels = batch["geo_points"][..., -1]
237
+
238
+ embed_outputs, shape_logits, posteriors = self(surface, image, text, volume_queries)
239
+
240
+ aeloss, log_dict_ae = self.loss(
241
+ **embed_outputs,
242
+ posteriors=posteriors,
243
+ shape_logits=shape_logits,
244
+ shape_labels=shape_labels,
245
+ split="val"
246
+ )
247
+ self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=shape_logits.shape[0],
248
+ sync_dist=False, rank_zero_only=True)
249
+
250
+ return aeloss
251
+
252
+ def visual_alignment(self,
253
+ surface: torch.FloatTensor,
254
+ image: torch.FloatTensor,
255
+ text: torch.FloatTensor,
256
+ description: Optional[List[str]] = None,
257
+ bounds: Union[Tuple[float], List[float]] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
258
+ octree_depth: int = 7,
259
+ num_chunks: int = 10000) -> List[AlignedMeshOutput]:
260
+
261
+ """
262
+
263
+ Args:
264
+ surface:
265
+ image:
266
+ text:
267
+ description:
268
+ bounds:
269
+ octree_depth:
270
+ num_chunks:
271
+
272
+ Returns:
273
+ mesh_outputs (List[AlignedMeshOutput]): the mesh outputs list.
274
+
275
+ """
276
+
277
+ outputs = []
278
+
279
+ device = surface.device
280
+ bs = surface.shape[0]
281
+
282
+ embed_outputs, shape_z = self.model(surface, image, text)
283
+
284
+ # calculate the similarity
285
+ image_embed = embed_outputs["image_embed"]
286
+ text_embed = embed_outputs["text_embed"]
287
+ shape_embed = embed_outputs["shape_embed"]
288
+
289
+ # normalized features
290
+ shape_embed = F.normalize(shape_embed, dim=-1, p=2)
291
+ text_embed = F.normalize(text_embed, dim=-1, p=2)
292
+ image_embed = F.normalize(image_embed, dim=-1, p=2)
293
+
294
+ # B x B
295
+ shape_text_similarity = (100.0 * shape_embed @ text_embed.T).softmax(dim=-1)
296
+
297
+ # B x B
298
+ shape_image_similarity = (100.0 * shape_embed @ image_embed.T).softmax(dim=-1)
299
+
300
+ # shape reconstruction
301
+ shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_z)
302
+ latents = self.model.shape_model.decode(shape_zq)
303
+ geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
304
+
305
+ # 2. decode geometry
306
+ mesh_v_f, has_surface = extract_geometry(
307
+ geometric_func=geometric_func,
308
+ device=device,
309
+ batch_size=bs,
310
+ bounds=bounds,
311
+ octree_depth=octree_depth,
312
+ num_chunks=num_chunks,
313
+ disable=not self.zero_rank
314
+ )
315
+
316
+ # 3. decode texture
317
+ for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
318
+ if not is_surface:
319
+ outputs.append(None)
320
+ continue
321
+
322
+ out = AlignedMeshOutput()
323
+ out.mesh_v = mesh_v
324
+ out.mesh_f = mesh_f
325
+ out.surface = surface[i].cpu().numpy()
326
+ out.image = image[i].cpu().numpy()
327
+ if description is not None:
328
+ out.text = description[i]
329
+ out.shape_text_similarity = shape_text_similarity[i, i]
330
+ out.shape_image_similarity = shape_image_similarity[i, i]
331
+
332
+ outputs.append(out)
333
+
334
+ return outputs
335
+
336
+ def latent2mesh(self,
337
+ latents: torch.FloatTensor,
338
+ bounds: Union[Tuple[float], List[float], float] = 1.1,
339
+ octree_depth: int = 7,
340
+ num_chunks: int = 10000) -> List[Latent2MeshOutput]:
341
+
342
+ """
343
+
344
+ Args:
345
+ latents: [bs, num_latents, dim]
346
+ bounds:
347
+ octree_depth:
348
+ num_chunks:
349
+
350
+ Returns:
351
+ mesh_outputs (List[MeshOutput]): the mesh outputs list.
352
+
353
+ """
354
+
355
+ outputs = []
356
+
357
+ geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
358
+
359
+ # 2. decode geometry
360
+ device = latents.device
361
+ mesh_v_f, has_surface = extract_geometry(
362
+ geometric_func=geometric_func,
363
+ device=device,
364
+ batch_size=len(latents),
365
+ bounds=bounds,
366
+ octree_depth=octree_depth,
367
+ num_chunks=num_chunks,
368
+ disable=not self.zero_rank
369
+ )
370
+
371
+ # 3. decode texture
372
+ for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
373
+ if not is_surface:
374
+ outputs.append(None)
375
+ continue
376
+
377
+ out = Latent2MeshOutput()
378
+ out.mesh_v = mesh_v
379
+ out.mesh_f = mesh_f
380
+
381
+ outputs.append(out)
382
+
383
+ return outputs
miche/michelangelo/models/tsal/clip_asl_module.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import torch
4
+ from torch import nn
5
+ from einops import rearrange
6
+ from transformers import CLIPModel
7
+
8
+ from miche.michelangelo.models.tsal.tsal_base import AlignedShapeAsLatentModule
9
+
10
+
11
+ class CLIPAlignedShapeAsLatentModule(AlignedShapeAsLatentModule):
12
+
13
+ def __init__(self, *,
14
+ shape_model,
15
+ clip_model_version: str = "openai/clip-vit-large-patch14"):
16
+
17
+ super().__init__()
18
+
19
+ # self.clip_model: CLIPModel = CLIPModel.from_pretrained(clip_model_version)
20
+ # for params in self.clip_model.parameters():
21
+ # params.requires_grad = False
22
+ self.clip_model = None
23
+ self.shape_model = shape_model
24
+ self.shape_projection = nn.Parameter(torch.empty(self.shape_model.width, self.shape_model.width))
25
+ # nn.init.normal_(self.shape_projection, std=self.shape_model.width ** -0.5)
26
+
27
+ def set_shape_model_only(self):
28
+ self.clip_model = None
29
+
30
+ def encode_shape_embed(self, surface, return_latents: bool = False):
31
+ """
32
+
33
+ Args:
34
+ surface (torch.FloatTensor): [bs, n, 3 + c]
35
+ return_latents (bool):
36
+
37
+ Returns:
38
+ x (torch.FloatTensor): [bs, projection_dim]
39
+ shape_latents (torch.FloatTensor): [bs, m, d]
40
+ """
41
+
42
+ pc = surface[..., 0:3]
43
+ feats = surface[..., 3:]
44
+
45
+ shape_embed, shape_latents = self.shape_model.encode_latents(pc, feats)
46
+ x = shape_embed @ self.shape_projection
47
+
48
+ if return_latents:
49
+ return x, shape_latents
50
+ else:
51
+ return x
52
+
53
+ def encode_image_embed(self, image):
54
+ """
55
+
56
+ Args:
57
+ image (torch.FloatTensor): [bs, 3, h, w]
58
+
59
+ Returns:
60
+ x (torch.FloatTensor): [bs, projection_dim]
61
+ """
62
+
63
+ x = self.clip_model.get_image_features(image)
64
+
65
+ return x
66
+
67
+ def encode_text_embed(self, text):
68
+ x = self.clip_model.get_text_features(text)
69
+ return x
70
+
71
+ def forward(self, surface, image, text):
72
+ """
73
+
74
+ Args:
75
+ surface (torch.FloatTensor):
76
+ image (torch.FloatTensor): [bs, 3, 224, 224]
77
+ text (torch.LongTensor): [bs, num_templates, 77]
78
+
79
+ Returns:
80
+ embed_outputs (dict): the embedding outputs, and it contains:
81
+ - image_embed (torch.FloatTensor):
82
+ - text_embed (torch.FloatTensor):
83
+ - shape_embed (torch.FloatTensor):
84
+ - logit_scale (float):
85
+ """
86
+
87
+ # # text embedding
88
+ # text_embed_all = []
89
+ # for i in range(text.shape[0]):
90
+ # text_for_one_sample = text[i]
91
+ # text_embed = self.encode_text_embed(text_for_one_sample)
92
+ # text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
93
+ # text_embed = text_embed.mean(dim=0)
94
+ # text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
95
+ # text_embed_all.append(text_embed)
96
+ # text_embed_all = torch.stack(text_embed_all)
97
+
98
+ b = text.shape[0]
99
+ text_tokens = rearrange(text, "b t l -> (b t) l")
100
+ text_embed = self.encode_text_embed(text_tokens)
101
+ text_embed = rearrange(text_embed, "(b t) d -> b t d", b=b)
102
+ text_embed = text_embed.mean(dim=1)
103
+ text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
104
+
105
+ # image embedding
106
+ image_embed = self.encode_image_embed(image)
107
+
108
+ # shape embedding
109
+ shape_embed, shape_latents = self.encode_shape_embed(surface, return_latents=True)
110
+
111
+ embed_outputs = {
112
+ "image_embed": image_embed,
113
+ "text_embed": text_embed,
114
+ "shape_embed": shape_embed,
115
+ # "logit_scale": self.clip_model.logit_scale.exp()
116
+ }
117
+
118
+ return embed_outputs, shape_latents
miche/michelangelo/models/tsal/inference_utils.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import torch
4
+ from tqdm import tqdm
5
+ from einops import repeat
6
+ import numpy as np
7
+ from typing import Callable, Tuple, List, Union, Optional
8
+ from skimage import measure
9
+
10
+ from miche.michelangelo.graphics.primitives import generate_dense_grid_points
11
+
12
+
13
+ @torch.no_grad()
14
+ def extract_geometry(geometric_func: Callable,
15
+ device: torch.device,
16
+ batch_size: int = 1,
17
+ bounds: Union[Tuple[float], List[float], float] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
18
+ octree_depth: int = 7,
19
+ num_chunks: int = 10000,
20
+ disable: bool = True):
21
+
22
+ # Args:
23
+ # geometric_func:
24
+ # device:
25
+ # bounds:
26
+ # octree_depth:
27
+ # batch_size:
28
+ # num_chunks:
29
+ # disable:
30
+ # Returns:
31
+
32
+ if isinstance(bounds, float):
33
+ bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
34
+
35
+ bbox_min = np.array(bounds[0:3])
36
+ bbox_max = np.array(bounds[3:6])
37
+ bbox_size = bbox_max - bbox_min
38
+
39
+ xyz_samples, grid_size, length = generate_dense_grid_points(
40
+ bbox_min=bbox_min,
41
+ bbox_max=bbox_max,
42
+ octree_depth=octree_depth,
43
+ indexing="ij"
44
+ )
45
+ xyz_samples = torch.FloatTensor(xyz_samples)
46
+
47
+ batch_logits = []
48
+ for start in tqdm(range(0, xyz_samples.shape[0], num_chunks),
49
+ desc="Implicit Function:", disable=disable, leave=False):
50
+ queries = xyz_samples[start: start + num_chunks, :].to(device)
51
+ batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
52
+
53
+ logits = geometric_func(batch_queries)
54
+ batch_logits.append(logits.cpu())
55
+
56
+ grid_logits = torch.cat(batch_logits, dim=1).view((batch_size, grid_size[0], grid_size[1], grid_size[2])).numpy()
57
+
58
+ mesh_v_f = []
59
+ has_surface = np.zeros((batch_size,), dtype=np.bool_)
60
+ for i in range(batch_size):
61
+ try:
62
+ vertices, faces, normals, _ = measure.marching_cubes(grid_logits[i], 0, method="lewiner")
63
+ vertices = vertices / grid_size * bbox_size + bbox_min
64
+ # vertices[:, [0, 1]] = vertices[:, [1, 0]]
65
+ mesh_v_f.append((vertices.astype(np.float32), np.ascontiguousarray(faces)))
66
+ has_surface[i] = True
67
+
68
+ except ValueError:
69
+ mesh_v_f.append((None, None))
70
+ has_surface[i] = False
71
+
72
+ except RuntimeError:
73
+ mesh_v_f.append((None, None))
74
+ has_surface[i] = False
75
+
76
+ return mesh_v_f, has_surface
miche/michelangelo/models/tsal/loss.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ from typing import Optional
7
+
8
+ from miche.michelangelo.models.modules.distributions import DiagonalGaussianDistribution
9
+ from miche.michelangelo.utils import misc
10
+
11
+
12
+ class ContrastKLNearFar(nn.Module):
13
+ def __init__(self,
14
+ contrast_weight: float = 1.0,
15
+ near_weight: float = 0.1,
16
+ kl_weight: float = 1.0,
17
+ num_near_samples: Optional[int] = None):
18
+
19
+ super().__init__()
20
+
21
+ self.labels = None
22
+ self.last_local_batch_size = None
23
+
24
+ self.contrast_weight = contrast_weight
25
+ self.near_weight = near_weight
26
+ self.kl_weight = kl_weight
27
+ self.num_near_samples = num_near_samples
28
+ self.geo_criterion = nn.BCEWithLogitsLoss()
29
+
30
+ def forward(self,
31
+ shape_embed: torch.FloatTensor,
32
+ text_embed: torch.FloatTensor,
33
+ image_embed: torch.FloatTensor,
34
+ logit_scale: torch.FloatTensor,
35
+ posteriors: Optional[DiagonalGaussianDistribution],
36
+ shape_logits: torch.FloatTensor,
37
+ shape_labels: torch.FloatTensor,
38
+ split: Optional[str] = "train", **kwargs):
39
+
40
+ # shape_embed: torch.FloatTensor
41
+ # text_embed: torch.FloatTensor
42
+ # image_embed: torch.FloatTensor
43
+ # logit_scale: torch.FloatTensor
44
+ # posteriors: Optional[DiagonalGaussianDistribution]
45
+ # shape_logits: torch.FloatTensor
46
+ # shape_labels: torch.FloatTensor
47
+
48
+ local_batch_size = shape_embed.size(0)
49
+
50
+ if local_batch_size != self.last_local_batch_size:
51
+ self.labels = local_batch_size * misc.get_rank() + torch.arange(
52
+ local_batch_size, device=shape_embed.device
53
+ ).long()
54
+ self.last_local_batch_size = local_batch_size
55
+
56
+ # normalized features
57
+ shape_embed = F.normalize(shape_embed, dim=-1, p=2)
58
+ text_embed = F.normalize(text_embed, dim=-1, p=2)
59
+ image_embed = F.normalize(image_embed, dim=-1, p=2)
60
+
61
+ # gather features from all GPUs
62
+ shape_embed_all, text_embed_all, image_embed_all = misc.all_gather_batch(
63
+ [shape_embed, text_embed, image_embed]
64
+ )
65
+
66
+ # cosine similarity as logits
67
+ logits_per_shape_text = logit_scale * shape_embed @ text_embed_all.t()
68
+ logits_per_text_shape = logit_scale * text_embed @ shape_embed_all.t()
69
+ logits_per_shape_image = logit_scale * shape_embed @ image_embed_all.t()
70
+ logits_per_image_shape = logit_scale * image_embed @ shape_embed_all.t()
71
+ contrast_loss = (F.cross_entropy(logits_per_shape_text, self.labels) +
72
+ F.cross_entropy(logits_per_text_shape, self.labels)) / 2 + \
73
+ (F.cross_entropy(logits_per_shape_image, self.labels) +
74
+ F.cross_entropy(logits_per_image_shape, self.labels)) / 2
75
+
76
+ # shape reconstruction
77
+ if self.num_near_samples is None:
78
+ num_vol = shape_logits.shape[1] // 2
79
+ else:
80
+ num_vol = shape_logits.shape[1] - self.num_near_samples
81
+
82
+ vol_logits = shape_logits[:, 0:num_vol]
83
+ vol_labels = shape_labels[:, 0:num_vol]
84
+
85
+ near_logits = shape_logits[:, num_vol:]
86
+ near_labels = shape_labels[:, num_vol:]
87
+
88
+ # occupancy loss
89
+ vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
90
+ near_bce = self.geo_criterion(near_logits.float(), near_labels.float())
91
+
92
+ if posteriors is None:
93
+ kl_loss = torch.tensor(0.0, dtype=vol_logits.dtype, device=vol_logits.device)
94
+ else:
95
+ kl_loss = posteriors.kl(dims=(1, 2))
96
+ kl_loss = torch.mean(kl_loss)
97
+
98
+ loss = vol_bce + near_bce * self.near_weight + kl_loss * self.kl_weight + contrast_loss * self.contrast_weight
99
+
100
+ # compute accuracy
101
+ with torch.no_grad():
102
+ pred = torch.argmax(logits_per_shape_text, dim=-1)
103
+ correct = pred.eq(self.labels).sum()
104
+ shape_text_acc = 100 * correct / local_batch_size
105
+
106
+ pred = torch.argmax(logits_per_shape_image, dim=-1)
107
+ correct = pred.eq(self.labels).sum()
108
+ shape_image_acc = 100 * correct / local_batch_size
109
+
110
+ preds = shape_logits >= 0
111
+ accuracy = (preds == shape_labels).float()
112
+ accuracy = accuracy.mean()
113
+
114
+ log = {
115
+ "{}/contrast".format(split): contrast_loss.clone().detach(),
116
+ "{}/near".format(split): near_bce.detach(),
117
+ "{}/far".format(split): vol_bce.detach(),
118
+ "{}/kl".format(split): kl_loss.detach(),
119
+ "{}/shape_text_acc".format(split): shape_text_acc,
120
+ "{}/shape_image_acc".format(split): shape_image_acc,
121
+ "{}/total_loss".format(split): loss.clone().detach(),
122
+ "{}/accuracy".format(split): accuracy,
123
+ }
124
+
125
+ if posteriors is not None:
126
+ log[f"{split}/mean"] = posteriors.mean.mean().detach()
127
+ log[f"{split}/std_mean"] = posteriors.std.mean().detach()
128
+ log[f"{split}/std_max"] = posteriors.std.max().detach()
129
+
130
+ return loss, log
miche/michelangelo/models/tsal/sal_perceiver.py ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ from typing import Optional
6
+ from einops import repeat
7
+ import math
8
+
9
+ from miche.michelangelo.models.modules import checkpoint
10
+ from miche.michelangelo.models.modules.embedder import FourierEmbedder
11
+ from miche.michelangelo.models.modules.distributions import DiagonalGaussianDistribution
12
+ from miche.michelangelo.models.modules.transformer_blocks import (
13
+ ResidualCrossAttentionBlock,
14
+ Transformer
15
+ )
16
+
17
+ from .tsal_base import ShapeAsLatentModule
18
+
19
+
20
+ class CrossAttentionEncoder(nn.Module):
21
+
22
+ def __init__(self, *,
23
+ device: Optional[torch.device],
24
+ dtype: Optional[torch.dtype],
25
+ num_latents: int,
26
+ fourier_embedder: FourierEmbedder,
27
+ point_feats: int,
28
+ width: int,
29
+ heads: int,
30
+ layers: int,
31
+ init_scale: float = 0.25,
32
+ qkv_bias: bool = True,
33
+ flash: bool = False,
34
+ use_ln_post: bool = False,
35
+ use_checkpoint: bool = False):
36
+
37
+ super().__init__()
38
+
39
+ self.use_checkpoint = use_checkpoint
40
+ self.num_latents = num_latents
41
+
42
+ self.query = nn.Parameter(torch.randn((num_latents, width), device=device, dtype=dtype) * 0.02)
43
+
44
+ self.fourier_embedder = fourier_embedder
45
+ self.input_proj = nn.Linear(self.fourier_embedder.out_dim + point_feats, width, device=device, dtype=dtype)
46
+ self.cross_attn = ResidualCrossAttentionBlock(
47
+ device=device,
48
+ dtype=dtype,
49
+ width=width,
50
+ heads=heads,
51
+ init_scale=init_scale,
52
+ qkv_bias=qkv_bias,
53
+ flash=flash,
54
+ )
55
+
56
+ self.self_attn = Transformer(
57
+ device=device,
58
+ dtype=dtype,
59
+ n_ctx=num_latents,
60
+ width=width,
61
+ layers=layers,
62
+ heads=heads,
63
+ init_scale=init_scale,
64
+ qkv_bias=qkv_bias,
65
+ flash=flash,
66
+ use_checkpoint=False
67
+ )
68
+
69
+ if use_ln_post:
70
+ self.ln_post = nn.LayerNorm(width, dtype=dtype, device=device)
71
+ else:
72
+ self.ln_post = None
73
+
74
+ def _forward(self, pc, feats):
75
+
76
+ # Args:
77
+ # pc (torch.FloatTensor): [B, N, 3]
78
+ # feats (torch.FloatTensor or None): [B, N, C]
79
+
80
+ bs = pc.shape[0]
81
+
82
+ data = self.fourier_embedder(pc)
83
+ if feats is not None:
84
+ data = torch.cat([data, feats], dim=-1)
85
+ data = self.input_proj(data)
86
+
87
+ query = repeat(self.query, "m c -> b m c", b=bs)
88
+ latents = self.cross_attn(query, data)
89
+ latents = self.self_attn(latents)
90
+
91
+ if self.ln_post is not None:
92
+ latents = self.ln_post(latents)
93
+
94
+ return latents, pc
95
+
96
+ def forward(self, pc: torch.FloatTensor, feats: Optional[torch.FloatTensor] = None):
97
+
98
+ # Args:
99
+ # pc (torch.FloatTensor): [B, N, 3]
100
+ # feats (torch.FloatTensor or None): [B, N, C]
101
+
102
+
103
+ return checkpoint(self._forward, (pc, feats), self.parameters(), self.use_checkpoint)
104
+
105
+
106
+ class CrossAttentionDecoder(nn.Module):
107
+
108
+ def __init__(self, *,
109
+ device: Optional[torch.device],
110
+ dtype: Optional[torch.dtype],
111
+ num_latents: int,
112
+ out_channels: int,
113
+ fourier_embedder: FourierEmbedder,
114
+ width: int,
115
+ heads: int,
116
+ init_scale: float = 0.25,
117
+ qkv_bias: bool = True,
118
+ flash: bool = False,
119
+ use_checkpoint: bool = False):
120
+
121
+ super().__init__()
122
+
123
+ self.use_checkpoint = use_checkpoint
124
+ self.fourier_embedder = fourier_embedder
125
+
126
+ self.query_proj = nn.Linear(self.fourier_embedder.out_dim, width, device=device, dtype=dtype)
127
+
128
+ self.cross_attn_decoder = ResidualCrossAttentionBlock(
129
+ device=device,
130
+ dtype=dtype,
131
+ n_data=num_latents,
132
+ width=width,
133
+ heads=heads,
134
+ init_scale=init_scale,
135
+ qkv_bias=qkv_bias,
136
+ flash=flash
137
+ )
138
+
139
+ self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
140
+ self.output_proj = nn.Linear(width, out_channels, device=device, dtype=dtype)
141
+
142
+ def _forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
143
+ queries = self.query_proj(self.fourier_embedder(queries))
144
+ x = self.cross_attn_decoder(queries, latents)
145
+ x = self.ln_post(x)
146
+ x = self.output_proj(x)
147
+ return x
148
+
149
+ def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
150
+ return checkpoint(self._forward, (queries, latents), self.parameters(), self.use_checkpoint)
151
+
152
+
153
+ class ShapeAsLatentPerceiver(ShapeAsLatentModule):
154
+ def __init__(self, *,
155
+ device: Optional[torch.device],
156
+ dtype: Optional[torch.dtype],
157
+ num_latents: int,
158
+ point_feats: int = 0,
159
+ embed_dim: int = 0,
160
+ num_freqs: int = 8,
161
+ include_pi: bool = True,
162
+ width: int,
163
+ heads: int,
164
+ num_encoder_layers: int,
165
+ num_decoder_layers: int,
166
+ init_scale: float = 0.25,
167
+ qkv_bias: bool = True,
168
+ flash: bool = False,
169
+ use_ln_post: bool = False,
170
+ use_checkpoint: bool = False):
171
+
172
+ super().__init__()
173
+
174
+ self.use_checkpoint = use_checkpoint
175
+
176
+ self.num_latents = num_latents
177
+ self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
178
+
179
+ init_scale = init_scale * math.sqrt(1.0 / width)
180
+ self.encoder = CrossAttentionEncoder(
181
+ device=device,
182
+ dtype=dtype,
183
+ fourier_embedder=self.fourier_embedder,
184
+ num_latents=num_latents,
185
+ point_feats=point_feats,
186
+ width=width,
187
+ heads=heads,
188
+ layers=num_encoder_layers,
189
+ init_scale=init_scale,
190
+ qkv_bias=qkv_bias,
191
+ flash=flash,
192
+ use_ln_post=use_ln_post,
193
+ use_checkpoint=use_checkpoint
194
+ )
195
+
196
+ self.embed_dim = embed_dim
197
+ if embed_dim > 0:
198
+ # VAE embed
199
+ self.pre_kl = nn.Linear(width, embed_dim * 2, device=device, dtype=dtype)
200
+ self.post_kl = nn.Linear(embed_dim, width, device=device, dtype=dtype)
201
+ self.latent_shape = (num_latents, embed_dim)
202
+ else:
203
+ self.latent_shape = (num_latents, width)
204
+
205
+ self.transformer = Transformer(
206
+ device=device,
207
+ dtype=dtype,
208
+ n_ctx=num_latents,
209
+ width=width,
210
+ layers=num_decoder_layers,
211
+ heads=heads,
212
+ init_scale=init_scale,
213
+ qkv_bias=qkv_bias,
214
+ flash=flash,
215
+ use_checkpoint=use_checkpoint
216
+ )
217
+
218
+ # geometry decoder
219
+ self.geo_decoder = CrossAttentionDecoder(
220
+ device=device,
221
+ dtype=dtype,
222
+ fourier_embedder=self.fourier_embedder,
223
+ out_channels=1,
224
+ num_latents=num_latents,
225
+ width=width,
226
+ heads=heads,
227
+ init_scale=init_scale,
228
+ qkv_bias=qkv_bias,
229
+ flash=flash,
230
+ use_checkpoint=use_checkpoint
231
+ )
232
+
233
+ def encode(self,
234
+ pc: torch.FloatTensor,
235
+ feats: Optional[torch.FloatTensor] = None,
236
+ sample_posterior: bool = True):
237
+
238
+
239
+ # Args:
240
+ # pc (torch.FloatTensor): [B, N, 3]
241
+ # feats (torch.FloatTensor or None): [B, N, C]
242
+ # sample_posterior (bool):
243
+
244
+ # Returns:
245
+ # latents (torch.FloatTensor)
246
+ # center_pos (torch.FloatTensor or None):
247
+ # posterior (DiagonalGaussianDistribution or None):
248
+
249
+
250
+ latents, center_pos = self.encoder(pc, feats)
251
+
252
+ posterior = None
253
+ if self.embed_dim > 0:
254
+ moments = self.pre_kl(latents)
255
+ posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
256
+
257
+ if sample_posterior:
258
+ latents = posterior.sample()
259
+ else:
260
+ latents = posterior.mode()
261
+
262
+ return latents, center_pos, posterior
263
+
264
+ def decode(self, latents: torch.FloatTensor):
265
+ latents = self.post_kl(latents)
266
+ return self.transformer(latents)
267
+
268
+ def query_geometry(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
269
+ logits = self.geo_decoder(queries, latents).squeeze(-1)
270
+ return logits
271
+
272
+ def forward(self,
273
+ pc: torch.FloatTensor,
274
+ feats: torch.FloatTensor,
275
+ volume_queries: torch.FloatTensor,
276
+ sample_posterior: bool = True):
277
+
278
+ # Args:
279
+ # pc (torch.FloatTensor): [B, N, 3]
280
+ # feats (torch.FloatTensor or None): [B, N, C]
281
+ # volume_queries (torch.FloatTensor): [B, P, 3]
282
+ # sample_posterior (bool):
283
+
284
+ # Returns:
285
+ # logits (torch.FloatTensor): [B, P]
286
+ # center_pos (torch.FloatTensor): [B, M, 3]
287
+ # posterior (DiagonalGaussianDistribution or None).
288
+
289
+
290
+
291
+ latents, center_pos, posterior = self.encode(pc, feats, sample_posterior=sample_posterior)
292
+
293
+ latents = self.decode(latents)
294
+ logits = self.query_geometry(volume_queries, latents)
295
+
296
+ return logits, center_pos, posterior
297
+
298
+
299
+ class AlignedShapeLatentPerceiver(ShapeAsLatentPerceiver):
300
+
301
+ def __init__(self, *,
302
+ device: Optional[torch.device],
303
+ dtype: Optional[torch.dtype],
304
+ num_latents: int,
305
+ point_feats: int = 0,
306
+ embed_dim: int = 0,
307
+ num_freqs: int = 8,
308
+ include_pi: bool = True,
309
+ width: int,
310
+ heads: int,
311
+ num_encoder_layers: int,
312
+ num_decoder_layers: int,
313
+ init_scale: float = 0.25,
314
+ qkv_bias: bool = True,
315
+ flash: bool = False,
316
+ use_ln_post: bool = False,
317
+ use_checkpoint: bool = False):
318
+
319
+ super().__init__(
320
+ device=device,
321
+ dtype=dtype,
322
+ num_latents=1 + num_latents,
323
+ point_feats=point_feats,
324
+ embed_dim=embed_dim,
325
+ num_freqs=num_freqs,
326
+ include_pi=include_pi,
327
+ width=width,
328
+ heads=heads,
329
+ num_encoder_layers=num_encoder_layers,
330
+ num_decoder_layers=num_decoder_layers,
331
+ init_scale=init_scale,
332
+ qkv_bias=qkv_bias,
333
+ flash=flash,
334
+ use_ln_post=use_ln_post,
335
+ use_checkpoint=use_checkpoint
336
+ )
337
+
338
+ self.width = width
339
+
340
+ def encode(self,
341
+ pc: torch.FloatTensor,
342
+ feats: Optional[torch.FloatTensor] = None,
343
+ sample_posterior: bool = True):
344
+
345
+ # Args:
346
+ # pc (torch.FloatTensor): [B, N, 3]
347
+ # feats (torch.FloatTensor or None): [B, N, c]
348
+ # sample_posterior (bool):
349
+
350
+ # Returns:
351
+ # shape_embed (torch.FloatTensor)
352
+ # kl_embed (torch.FloatTensor):
353
+ # posterior (DiagonalGaussianDistribution or None):
354
+
355
+
356
+ shape_embed, latents = self.encode_latents(pc, feats)
357
+ kl_embed, posterior = self.encode_kl_embed(latents, sample_posterior)
358
+
359
+ return shape_embed, kl_embed, posterior
360
+
361
+ def encode_latents(self,
362
+ pc: torch.FloatTensor,
363
+ feats: Optional[torch.FloatTensor] = None):
364
+
365
+ x, _ = self.encoder(pc, feats)
366
+
367
+ shape_embed = x[:, 0]
368
+ latents = x[:, 1:]
369
+
370
+ return shape_embed, latents
371
+
372
+ def encode_kl_embed(self, latents: torch.FloatTensor, sample_posterior: bool = True):
373
+ posterior = None
374
+ if self.embed_dim > 0:
375
+ moments = self.pre_kl(latents)
376
+ posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
377
+
378
+ if sample_posterior:
379
+ kl_embed = posterior.sample()
380
+ else:
381
+ kl_embed = posterior.mode()
382
+ else:
383
+ kl_embed = latents
384
+
385
+ return kl_embed, posterior
386
+
387
+ def forward(self,
388
+ pc: torch.FloatTensor,
389
+ feats: torch.FloatTensor,
390
+ volume_queries: torch.FloatTensor,
391
+ sample_posterior: bool = True):
392
+
393
+ # Args:
394
+ # pc (torch.FloatTensor): [B, N, 3]
395
+ # feats (torch.FloatTensor or None): [B, N, C]
396
+ # volume_queries (torch.FloatTensor): [B, P, 3]
397
+ # sample_posterior (bool):
398
+
399
+ # Returns:
400
+ # shape_embed (torch.FloatTensor): [B, projection_dim]
401
+ # logits (torch.FloatTensor): [B, M]
402
+ # posterior (DiagonalGaussianDistribution or None).
403
+
404
+
405
+ shape_embed, kl_embed, posterior = self.encode(pc, feats, sample_posterior=sample_posterior)
406
+
407
+ latents = self.decode(kl_embed)
408
+ logits = self.query_geometry(volume_queries, latents)
409
+
410
+ return shape_embed, logits, posterior
miche/michelangelo/models/tsal/tsal_base.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import torch.nn as nn
4
+ from typing import Tuple, List, Optional
5
+
6
+ # Base class for output of Point to Mesh transformation
7
+ class Point2MeshOutput(object):
8
+ def __init__(self):
9
+ self.mesh_v = None # Vertices of the mesh
10
+ self.mesh_f = None # Faces of the mesh
11
+ self.center = None # Center of the mesh
12
+ self.pc = None # Point cloud data
13
+
14
+
15
+ # Base class for output of Latent to Mesh transformation
16
+ class Latent2MeshOutput(object):
17
+ def __init__(self):
18
+ self.mesh_v = None # Vertices of the mesh
19
+ self.mesh_f = None # Faces of the mesh
20
+
21
+
22
+ # Base class for output of Aligned Mesh transformation
23
+ class AlignedMeshOutput(object):
24
+ def __init__(self):
25
+ self.mesh_v = None # Vertices of the mesh
26
+ self.mesh_f = None # Faces of the mesh
27
+ self.surface = None # Surface data
28
+ self.image = None # Aligned image data
29
+ self.text: Optional[str] = None # Aligned text data
30
+ self.shape_text_similarity: Optional[float] = None # Similarity between shape and text
31
+ self.shape_image_similarity: Optional[float] = None # Similarity between shape and image
32
+
33
+
34
+ # Base class for Shape as Latent with Point to Mesh transformation module
35
+ class ShapeAsLatentPLModule(nn.Module):
36
+ latent_shape: Tuple[int] # Shape of the latent space
37
+
38
+ def encode(self, surface, *args, **kwargs):
39
+ raise NotImplementedError
40
+
41
+ def decode(self, z_q, *args, **kwargs):
42
+ raise NotImplementedError
43
+
44
+ def latent2mesh(self, latents, *args, **kwargs) -> List[Latent2MeshOutput]:
45
+ raise NotImplementedError
46
+
47
+ def point2mesh(self, *args, **kwargs) -> List[Point2MeshOutput]:
48
+ raise NotImplementedError
49
+
50
+
51
+ # Base class for Shape as Latent module
52
+ class ShapeAsLatentModule(nn.Module):
53
+ latent_shape: Tuple[int, int] # Shape of the latent space
54
+
55
+ def __init__(self, *args, **kwargs):
56
+ super().__init__()
57
+
58
+ def encode(self, *args, **kwargs):
59
+ raise NotImplementedError
60
+
61
+ def decode(self, *args, **kwargs):
62
+ raise NotImplementedError
63
+
64
+ def query_geometry(self, *args, **kwargs):
65
+ raise NotImplementedError
66
+
67
+
68
+ # Base class for Aligned Shape as Latent with Point to Mesh transformation module
69
+ class AlignedShapeAsLatentPLModule(nn.Module):
70
+ latent_shape: Tuple[int] # Shape of the latent space
71
+
72
+ def set_shape_model_only(self):
73
+ raise NotImplementedError
74
+
75
+ def encode(self, surface, *args, **kwargs):
76
+ raise NotImplementedError
77
+
78
+ def decode(self, z_q, *args, **kwargs):
79
+ raise NotImplementedError
80
+
81
+ def latent2mesh(self, latents, *args, **kwargs) -> List[Latent2MeshOutput]:
82
+ raise NotImplementedError
83
+
84
+ def point2mesh(self, *args, **kwargs) -> List[Point2MeshOutput]:
85
+ raise NotImplementedError
86
+
87
+
88
+ # Base class for Aligned Shape as Latent module
89
+ class AlignedShapeAsLatentModule(nn.Module):
90
+ shape_model: ShapeAsLatentModule # Shape model module
91
+ latent_shape: Tuple[int, int] # Shape of the latent space
92
+
93
+
94
+ def __init__(self, *args, **kwargs):
95
+ super().__init__()
96
+
97
+ def set_shape_model_only(self):
98
+ raise NotImplementedError
99
+
100
+ def encode_image_embed(self, *args, **kwargs):
101
+ raise NotImplementedError
102
+
103
+ def encode_text_embed(self, *args, **kwargs):
104
+ raise NotImplementedError
105
+
106
+ def encode_shape_embed(self, *args, **kwargs):
107
+ raise NotImplementedError
108
+
109
+ # Base class for Textured Shape as Latent module
110
+ class TexturedShapeAsLatentModule(nn.Module):
111
+
112
+ def __init__(self, *args, **kwargs):
113
+ super().__init__()
114
+
115
+ def encode(self, *args, **kwargs):
116
+ raise NotImplementedError
117
+
118
+ def decode(self, *args, **kwargs):
119
+ raise NotImplementedError
120
+
121
+ def query_geometry(self, *args, **kwargs):
122
+ raise NotImplementedError
123
+
124
+ def query_color(self, *args, **kwargs):
125
+ raise NotImplementedError
miche/michelangelo/utils/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ from .misc import instantiate_from_config
miche/michelangelo/utils/misc.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import importlib
4
+
5
+ import torch
6
+ import torch.distributed as dist
7
+
8
+
9
+
10
+ def get_obj_from_str(string, reload=False):
11
+ module, cls = string.rsplit(".", 1)
12
+ if reload:
13
+ module_imp = importlib.import_module(module)
14
+ importlib.reload(module_imp)
15
+ return getattr(importlib.import_module(module, package=None), cls)
16
+
17
+
18
+ def get_obj_from_config(config):
19
+ if "target" not in config:
20
+ raise KeyError("Expected key `target` to instantiate.")
21
+
22
+ return get_obj_from_str(config["target"])
23
+
24
+
25
+ def instantiate_from_config(config, **kwargs):
26
+ if "target" not in config:
27
+ raise KeyError("Expected key `target` to instantiate.")
28
+
29
+ cls = get_obj_from_str(config["target"])
30
+
31
+ params = config.get("params", dict())
32
+ # params.update(kwargs)
33
+ # instance = cls(**params)
34
+ kwargs.update(params)
35
+ instance = cls(**kwargs)
36
+
37
+ return instance
38
+
39
+
40
+ def is_dist_avail_and_initialized():
41
+ if not dist.is_available():
42
+ return False
43
+ if not dist.is_initialized():
44
+ return False
45
+ return True
46
+
47
+
48
+ def get_rank():
49
+ if not is_dist_avail_and_initialized():
50
+ return 0
51
+ return dist.get_rank()
52
+
53
+
54
+ def get_world_size():
55
+ if not is_dist_avail_and_initialized():
56
+ return 1
57
+ return dist.get_world_size()
58
+
59
+
60
+ def all_gather_batch(tensors):
61
+ """
62
+ Performs all_gather operation on the provided tensors.
63
+ """
64
+ # Queue the gathered tensors
65
+ world_size = get_world_size()
66
+ # There is no need for reduction in the single-proc case
67
+ if world_size == 1:
68
+ return tensors
69
+ tensor_list = []
70
+ output_tensor = []
71
+ for tensor in tensors:
72
+ tensor_all = [torch.ones_like(tensor) for _ in range(world_size)]
73
+ dist.all_gather(
74
+ tensor_all,
75
+ tensor,
76
+ async_op=False # performance opt
77
+ )
78
+
79
+ tensor_list.append(tensor_all)
80
+
81
+ for tensor_all in tensor_list:
82
+ output_tensor.append(torch.cat(tensor_all, dim=0))
83
+ return output_tensor
miche/shapevae-256.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ target: miche.michelangelo.models.tsal.asl_pl_module.AlignedShapeAsLatentPLModule
3
+ params:
4
+ shape_module_cfg:
5
+ target: miche.michelangelo.models.tsal.sal_perceiver.AlignedShapeLatentPerceiver
6
+ params:
7
+ num_latents: 256
8
+ embed_dim: 64
9
+ point_feats: 3 # normal
10
+ num_freqs: 8
11
+ include_pi: false
12
+ heads: 12
13
+ width: 768
14
+ num_encoder_layers: 8
15
+ num_decoder_layers: 16
16
+ use_ln_post: true
17
+ init_scale: 0.25
18
+ qkv_bias: false
19
+ use_checkpoint: true
20
+ aligned_module_cfg:
21
+ target: miche.michelangelo.models.tsal.clip_asl_module.CLIPAlignedShapeAsLatentModule
22
+ params:
23
+ clip_model_version: "./checkpoints/clip/clip-vit-large-patch14"
24
+
25
+ loss_cfg:
26
+ target: miche.michelangelo.models.tsal.loss.ContrastKLNearFar
27
+ params:
28
+ contrast_weight: 0.1
29
+ near_weight: 0.1
30
+ kl_weight: 0.001
31
+
32
+ optimizer_cfg:
33
+ optimizer:
34
+ target: torch.optim.AdamW
35
+ params:
36
+ betas: [0.9, 0.99]
37
+ eps: 1.e-6
38
+ weight_decay: 1.e-2
39
+
40
+ scheduler:
41
+ target: miche.michelangelo.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
42
+ params:
43
+ warm_up_steps: 5000
44
+ f_start: 1.e-6
45
+ f_min: 1.e-3
46
+ f_max: 1.0
model/.DS_Store ADDED
Binary file (6.15 kB). View file
 
model/__init__.py ADDED
File without changes
model/data_utils.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Mesh data utilities."""
2
+ import random
3
+ import networkx as nx
4
+ import numpy as np
5
+ # import pyrr
6
+ from six.moves import range
7
+ import trimesh
8
+ from scipy.spatial.transform import Rotation
9
+
10
+
11
+ def to_mesh(vertices, faces, transpose=True, post_process=False):
12
+ if transpose:
13
+ vertices = vertices[:, [1, 2, 0]]
14
+
15
+ if faces.min() == 1:
16
+ faces = (np.array(faces) - 1).tolist()
17
+ mesh = trimesh.Trimesh(vertices=vertices, faces=faces, process=False)
18
+
19
+ if post_process:
20
+ mesh.merge_vertices()
21
+ mesh.update_faces(mesh.unique_faces())
22
+ mesh.fix_normals()
23
+ return mesh
24
+
25
+
26
+ def center_vertices(vertices):
27
+ """Translate the vertices so that bounding box is centered at zero."""
28
+ vert_min = vertices.min(axis=0)
29
+ vert_max = vertices.max(axis=0)
30
+ vert_center = 0.5 * (vert_min + vert_max)
31
+ # vert_center = np.mean(vertices, axis=0)
32
+ return vertices - vert_center
33
+
34
+
35
+ def face_to_cycles(face):
36
+ """Find cycles in face."""
37
+ g = nx.Graph()
38
+ for v in range(len(face) - 1):
39
+ g.add_edge(face[v], face[v + 1])
40
+ g.add_edge(face[-1], face[0])
41
+ return list(nx.cycle_basis(g))
42
+
43
+
44
+ def block_index(vertex, block_size=32):
45
+ return (vertex[2] // block_size, vertex[1] // block_size, vertex[0] // block_size)
46
+
47
+ def block_id(block_index, num_blocks=4):
48
+ return block_index[0] * num_blocks**2 + block_index[1] * num_blocks + block_index[2]
49
+
50
+
51
+ def normalize_vertices_scale(vertices, scale=0.95):
52
+ """Scale the vertices so that the long axis of the bounding box is one."""
53
+ vert_min = vertices.min(axis=0)
54
+ vert_max = vertices.max(axis=0)
55
+ extents = (vert_max - vert_min).max()
56
+ return 2.0 * scale * vertices / (extents + 1e-6)
57
+
58
+
59
+ def quantize_process_mesh(vertices, faces, quantization_bits=8, block_first_order=True, block_size=32, num_blocks=4):
60
+ """Quantize vertices, remove resulting duplicates and reindex faces."""
61
+ vertices = discretize(vertices, num_discrete=2**quantization_bits)
62
+ vertices, inv = np.unique(vertices, axis=0, return_inverse=True)
63
+
64
+ if block_first_order:
65
+ block_indices = np.array([block_index(v, block_size) for v in vertices])
66
+ block_ids = np.array([block_id(b, num_blocks) for b in block_indices])
67
+ sort_inds = np.lexsort((vertices[:, 0], vertices[:, 1], vertices[:, 2], block_ids))
68
+ else:
69
+ # Sort vertices by z then y then x.
70
+ sort_inds = np.lexsort(vertices.T)
71
+
72
+ vertices = vertices[sort_inds]
73
+ faces = [np.argsort(sort_inds)[inv[f]] for f in faces]
74
+
75
+ sub_faces = []
76
+ for f in faces:
77
+ cliques = face_to_cycles(f)
78
+ for c in cliques:
79
+ c_length = len(c)
80
+ if c_length > 2:
81
+ d = np.argmin(f)
82
+ sub_faces.append([f[(d + i) % c_length] for i in range(c_length)])
83
+
84
+ faces = sub_faces
85
+
86
+ # Sort faces by lowest vertex indices. If two faces have the same lowest
87
+ # index then sort by next lowest and so on.
88
+ faces.sort(key=lambda f: tuple(sorted(f)))
89
+ num_verts = vertices.shape[0]
90
+ vert_connected = np.equal(
91
+ np.arange(num_verts)[:, None], np.hstack(faces)[None]
92
+ ).any(axis=-1)
93
+ vertices = vertices[vert_connected]
94
+
95
+ # Re-index faces to re-ordered vertices.
96
+ vert_indices = np.arange(num_verts) - np.cumsum(1 - vert_connected.astype("int"))
97
+ faces = [vert_indices[f].tolist() for f in faces]
98
+
99
+ return vertices, faces
100
+
101
+
102
+ def process_mesh(vertices, faces, quantization_bits=8, augment=True, augment_dict=None):
103
+ """Process mesh vertices and faces."""
104
+
105
+ # Transpose so that z-axis is vertical.
106
+ vertices = vertices[:, [2, 0, 1]]
107
+
108
+ # Translate the vertices so that bounding box is centered at zero.
109
+ vertices = center_vertices(vertices)
110
+
111
+ if augment:
112
+ vertices = augment_mesh(vertices, **augment_dict)
113
+
114
+ # Scale the vertices so that the long diagonal of the bounding box is equal
115
+ # to one.
116
+ vertices = normalize_vertices_scale(vertices)
117
+
118
+ # Quantize and sort vertices, remove resulting duplicates, sort and reindex
119
+ # faces.
120
+ vertices, faces = quantize_process_mesh(
121
+ vertices, faces, quantization_bits=quantization_bits
122
+ )
123
+ vertices = undiscretize(vertices, num_discrete=2**quantization_bits)
124
+
125
+
126
+ # Discard degenerate meshes without faces.
127
+ return {
128
+ "vertices": vertices,
129
+ "faces": faces,
130
+ }
131
+
132
+
133
+ def load_process_mesh(mesh_obj_path, quantization_bits=8, augment=False, augment_dict=None):
134
+ """Load obj file and process."""
135
+ # Load mesh
136
+ mesh = trimesh.load(mesh_obj_path, force='mesh', process=False)
137
+ return process_mesh(mesh.vertices, mesh.faces, quantization_bits, augment=augment, augment_dict=augment_dict)
138
+
139
+
140
+ def augment_mesh(vertices, scale_min=0.95, scale_max=1.05, rotation=0., jitter_strength=0.):
141
+ '''scale vertices by a factor in [0.75, 1.25]'''
142
+
143
+ # vertices [nv, 3]
144
+ for i in range(3):
145
+ # Generate a random scale factor
146
+ scale = random.uniform(scale_min, scale_max)
147
+
148
+ # independently applied scaling across each axis of vertices
149
+ vertices[:, i] *= scale
150
+
151
+ if rotation != 0.:
152
+ axis = [random.uniform(-1, 1), random.uniform(-1, 1), random.uniform(-1, 1)]
153
+ radian = np.pi / 180 * rotation
154
+ rotation = Rotation.from_rotvec(radian * np.array(axis))
155
+ vertices =rotation.apply(vertices)
156
+
157
+
158
+ if jitter_strength != 0.:
159
+ jitter_amount = np.random.uniform(-jitter_strength, jitter_strength)
160
+ vertices += jitter_amount
161
+
162
+
163
+ return vertices
164
+
165
+
166
+ def discretize(
167
+ t,
168
+ continuous_range = (-1, 1),
169
+ num_discrete: int = 128
170
+ ):
171
+ lo, hi = continuous_range
172
+ assert hi > lo
173
+
174
+ t = (t - lo) / (hi - lo)
175
+ t *= num_discrete
176
+ t -= 0.5
177
+
178
+ return t.round().astype(np.int32).clip(min = 0, max = num_discrete - 1)
179
+
180
+
181
+ def undiscretize(
182
+ t,
183
+ continuous_range = (-1, 1),
184
+ num_discrete: int = 128
185
+ ):
186
+ lo, hi = continuous_range
187
+ assert hi > lo
188
+
189
+ t = t.astype(np.float32)
190
+
191
+ t += 0.5
192
+ t /= num_discrete
193
+ return t * (hi - lo) + lo
194
+
model/miche_conditioner.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from beartype import beartype
4
+ from miche.encode import load_model
5
+
6
+ # helper functions
7
+
8
+ def exists(val):
9
+ return val is not None
10
+
11
+ def default(*values):
12
+ for value in values:
13
+ if exists(value):
14
+ return value
15
+ return None
16
+
17
+
18
+ # point-cloud encoder from Michelangelo
19
+ @beartype
20
+ class PointConditioner(torch.nn.Module):
21
+ def __init__(
22
+ self,
23
+ *,
24
+ dim_latent = None,
25
+ model_name = 'miche-256-feature',
26
+ cond_dim = 768,
27
+ freeze = True,
28
+ ):
29
+ super().__init__()
30
+
31
+ # open-source version of miche
32
+ if model_name == 'miche-256-feature':
33
+ ckpt_path = None
34
+ config_path = 'miche/shapevae-256.yaml'
35
+
36
+ self.feature_dim = 1024 # embedding dimension
37
+ self.cond_length = 257 # length of embedding
38
+ self.point_encoder = load_model(ckpt_path=ckpt_path, config_path=config_path)
39
+
40
+ # additional layers to connect miche and GPT
41
+ self.cond_head_proj = nn.Linear(cond_dim, self.feature_dim)
42
+ self.cond_proj = nn.Linear(cond_dim, self.feature_dim)
43
+
44
+ else:
45
+ raise NotImplementedError
46
+
47
+ # whether to finetuen point-cloud encoder
48
+ if freeze:
49
+ for parameter in self.point_encoder.parameters():
50
+ parameter.requires_grad = False
51
+
52
+ self.freeze = freeze
53
+ self.model_name = model_name
54
+ self.dim_latent = default(dim_latent, self.feature_dim)
55
+
56
+ self.register_buffer('_device_param', torch.tensor(0.), persistent = False)
57
+
58
+
59
+ @property
60
+ def device(self):
61
+ return next(self.buffers()).device
62
+
63
+
64
+ def embed_pc(self, pc_normal):
65
+ # encode point cloud to embeddings
66
+ if self.model_name == 'miche-256-feature':
67
+ point_feature = self.point_encoder.encode_latents(pc_normal)
68
+ pc_embed_head = self.cond_head_proj(point_feature[:, 0:1])
69
+ pc_embed = self.cond_proj(point_feature[:, 1:])
70
+ pc_embed = torch.cat([pc_embed_head, pc_embed], dim=1)
71
+
72
+ return pc_embed
73
+
74
+
75
+ def forward(
76
+ self,
77
+ pc = None,
78
+ pc_embeds = None,
79
+ ):
80
+ if pc_embeds is None:
81
+ pc_embeds = self.embed_pc(pc.to(next(self.buffers()).dtype))
82
+
83
+ assert not torch.any(torch.isnan(pc_embeds)), 'NAN values in pc embedings'
84
+
85
+ return pc_embeds
86
+
model/model.py ADDED
@@ -0,0 +1,379 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn, Tensor
3
+ from torch.nn import Module
4
+ import torch.nn.functional as F
5
+ from einops import rearrange, repeat, pack
6
+ from pytorch_custom_utils import save_load
7
+ from beartype import beartype
8
+ from beartype.typing import Union, Tuple, Callable, Optional, Any
9
+ from einops import rearrange, repeat, pack
10
+ from x_transformers import Decoder
11
+ from x_transformers.x_transformers import LayerIntermediates
12
+ from x_transformers.autoregressive_wrapper import (
13
+ eval_decorator,
14
+ top_k,
15
+ )
16
+ from .miche_conditioner import PointConditioner
17
+ from functools import partial
18
+ from tqdm import tqdm
19
+ from .data_utils import discretize
20
+
21
+ # helper functions
22
+
23
+ def exists(v):
24
+ return v is not None
25
+
26
+ def default(v, d):
27
+ return v if exists(v) else d
28
+
29
+ def first(it):
30
+ return it[0]
31
+
32
+ def divisible_by(num, den):
33
+ return (num % den) == 0
34
+
35
+ def pad_at_dim(t, padding, dim = -1, value = 0):
36
+ ndim = t.ndim
37
+ right_dims = (ndim - dim - 1) if dim >= 0 else (-dim - 1)
38
+ zeros = (0, 0) * right_dims
39
+ return F.pad(t, (*zeros, *padding), value = value)
40
+
41
+
42
+ # main class of auto-regressive Transformer
43
+ @save_load()
44
+ class MeshTransformer(Module):
45
+ @beartype
46
+ def __init__(
47
+ self,
48
+ *,
49
+ dim: Union[int, Tuple[int, int]] = 512, # hidden size of Transformer
50
+ max_seq_len = 9600, # max sequence length
51
+ flash_attn = True, # wether to use flash attention
52
+ attn_depth = 12, # number of layers
53
+ attn_dim_head = 64, # dim for each head
54
+ attn_heads = 16, # number of heads
55
+ attn_kwargs: dict = dict(
56
+ ff_glu = True,
57
+ num_mem_kv = 4,
58
+ attn_qk_norm = True,
59
+ ),
60
+ dropout = 0.,
61
+ pad_id = -1,
62
+ coor_continuous_range = (-1., 1.),
63
+ num_discrete_coors = 128,
64
+ block_size = 8,
65
+ offset_size = 16,
66
+ mode = 'vertices',
67
+ special_token = -2,
68
+ use_special_block = False,
69
+ conditioned_on_pc = False,
70
+ encoder_name = 'miche-256-feature',
71
+ encoder_freeze = True,
72
+ ):
73
+ super().__init__()
74
+
75
+ if use_special_block:
76
+ # block_ids, offset_ids, special_block_ids
77
+ vocab_size = block_size**3 + offset_size**3 + block_size**3
78
+ self.sp_block_embed = nn.Parameter(torch.randn(1, dim))
79
+ else:
80
+ # block_ids, offset_ids, special_token
81
+ vocab_size = block_size**3 + offset_size**3 + 1
82
+ self.special_token = special_token
83
+ self.special_token_cb = block_size**3 + offset_size**3
84
+
85
+ self.use_special_block = use_special_block
86
+
87
+ self.sos_token = nn.Parameter(torch.randn(dim))
88
+ self.eos_token_id = vocab_size
89
+ self.mode = mode
90
+ self.token_embed = nn.Embedding(vocab_size + 1, dim)
91
+ self.num_discrete_coors = num_discrete_coors
92
+ self.coor_continuous_range = coor_continuous_range
93
+ self.block_size = block_size
94
+ self.offset_size = offset_size
95
+ self.abs_pos_emb = nn.Embedding(max_seq_len, dim)
96
+ self.max_seq_len = max_seq_len
97
+ self.conditioner = None
98
+ self.conditioned_on_pc = conditioned_on_pc
99
+ cross_attn_dim_context = None
100
+
101
+ self.block_embed = nn.Parameter(torch.randn(1, dim))
102
+ self.offset_embed = nn.Parameter(torch.randn(1, dim))
103
+
104
+ assert self.block_size * self.offset_size == self.num_discrete_coors
105
+
106
+ # load point_cloud encoder
107
+ if conditioned_on_pc:
108
+ print(f'Point cloud encoder: {encoder_name} | freeze: {encoder_freeze}')
109
+ self.conditioner = PointConditioner(model_name=encoder_name, freeze=encoder_freeze)
110
+ cross_attn_dim_context = self.conditioner.dim_latent
111
+ else:
112
+ raise NotImplementedError
113
+
114
+ # main autoregressive attention network
115
+ self.decoder = Decoder(
116
+ dim = dim,
117
+ depth = attn_depth,
118
+ dim_head = attn_dim_head,
119
+ heads = attn_heads,
120
+ attn_flash = flash_attn,
121
+ attn_dropout = dropout,
122
+ ff_dropout = dropout,
123
+ cross_attend = conditioned_on_pc,
124
+ cross_attn_dim_context = cross_attn_dim_context,
125
+ cross_attn_num_mem_kv = 4, # needed for preventing nan when dropping out text condition
126
+ **attn_kwargs
127
+ )
128
+
129
+ self.to_logits = nn.Linear(dim, vocab_size + 1)
130
+ self.pad_id = pad_id
131
+ self.discretize_face_coords = partial(
132
+ discretize,
133
+ num_discrete = num_discrete_coors,
134
+ continuous_range = coor_continuous_range
135
+ )
136
+
137
+ @property
138
+ def device(self):
139
+ return next(self.parameters()).device
140
+
141
+
142
+ @eval_decorator
143
+ @torch.no_grad()
144
+ @beartype
145
+ def generate(
146
+ self,
147
+ prompt: Optional[Tensor] = None,
148
+ pc: Optional[Tensor] = None,
149
+ cond_embeds: Optional[Tensor] = None,
150
+ batch_size: Optional[int] = None,
151
+ filter_logits_fn: Callable = top_k,
152
+ filter_kwargs: dict = dict(),
153
+ temperature = 1.,
154
+ return_codes = False,
155
+ cache_kv = True,
156
+ max_seq_len = None,
157
+ face_coords_to_file: Optional[Callable[[Tensor], Any]] = None,
158
+ tqdm_position = 0,
159
+ ):
160
+ max_seq_len = default(max_seq_len, self.max_seq_len)
161
+
162
+ if exists(prompt):
163
+ assert not exists(batch_size)
164
+
165
+ prompt = rearrange(prompt, 'b ... -> b (...)')
166
+ assert prompt.shape[-1] <= self.max_seq_len
167
+
168
+ batch_size = prompt.shape[0]
169
+
170
+ # encode point cloud
171
+ if cond_embeds is None:
172
+ if self.conditioned_on_pc:
173
+ cond_embeds = self.conditioner(pc = pc)
174
+
175
+ batch_size = default(batch_size, 1)
176
+
177
+ codes = default(prompt, torch.empty((batch_size, 0), dtype = torch.long, device = self.device))
178
+
179
+ curr_length = codes.shape[-1]
180
+
181
+ cache = None
182
+
183
+ # predict tokens auto-regressively
184
+ for i in tqdm(range(curr_length, max_seq_len), position=tqdm_position,
185
+ desc=f'Process: {tqdm_position}', dynamic_ncols=True, leave=False):
186
+
187
+ output = self.forward_on_codes(
188
+ codes,
189
+ return_loss = False,
190
+ return_cache = cache_kv,
191
+ append_eos = False,
192
+ cond_embeds = cond_embeds,
193
+ cache = cache
194
+ )
195
+
196
+ if cache_kv:
197
+ logits, cache = output
198
+
199
+ else:
200
+ logits = output
201
+
202
+ # sample code from logits
203
+ logits = logits[:, -1]
204
+ filtered_logits = filter_logits_fn(logits, **filter_kwargs)
205
+ probs = F.softmax(filtered_logits / temperature, dim = -1)
206
+ sample = torch.multinomial(probs, 1)
207
+ codes, _ = pack([codes, sample], 'b *')
208
+
209
+ # check for all rows to have [eos] to terminate
210
+
211
+ is_eos_codes = (codes == self.eos_token_id)
212
+
213
+ if is_eos_codes.any(dim = -1).all():
214
+ break
215
+
216
+ # mask out to padding anything after the first eos
217
+
218
+ mask = is_eos_codes.float().cumsum(dim = -1) >= 1
219
+ codes = codes.masked_fill(mask, self.pad_id)
220
+
221
+ # early return of raw residual quantizer codes
222
+
223
+ if return_codes:
224
+ # codes = rearrange(codes, 'b (n q) -> b n q', q = 2)
225
+ if not self.use_special_block:
226
+ codes[codes == self.special_token_cb] = self.special_token
227
+ return codes
228
+
229
+ face_coords, face_mask = self.decode_codes(codes)
230
+
231
+ if not exists(face_coords_to_file):
232
+ return face_coords, face_mask
233
+
234
+ files = [face_coords_to_file(coords[mask]) for coords, mask in zip(face_coords, face_mask)]
235
+ return files
236
+
237
+
238
+ def forward(
239
+ self,
240
+ *,
241
+ codes: Optional[Tensor] = None,
242
+ cache: Optional[LayerIntermediates] = None,
243
+ **kwargs
244
+ ):
245
+ # convert special tokens
246
+ if not self.use_special_block:
247
+ codes[codes == self.special_token] = self.special_token_cb
248
+
249
+ return self.forward_on_codes(codes, cache = cache, **kwargs)
250
+
251
+
252
+ def forward_on_codes(
253
+ self,
254
+ codes = None,
255
+ return_loss = True,
256
+ return_cache = False,
257
+ append_eos = True,
258
+ cache = None,
259
+ pc = None,
260
+ cond_embeds = None,
261
+ ):
262
+ # handle conditions
263
+
264
+ attn_context_kwargs = dict()
265
+
266
+ if self.conditioned_on_pc:
267
+ assert exists(pc) ^ exists(cond_embeds), 'point cloud should be given'
268
+
269
+ # preprocess faces and vertices
270
+ if not exists(cond_embeds):
271
+ cond_embeds = self.conditioner(
272
+ pc = pc,
273
+ pc_embeds = cond_embeds,
274
+ )
275
+
276
+ attn_context_kwargs = dict(
277
+ context = cond_embeds,
278
+ context_mask = None,
279
+ )
280
+
281
+ # take care of codes that may be flattened
282
+
283
+ if codes.ndim > 2:
284
+ codes = rearrange(codes, 'b ... -> b (...)')
285
+
286
+ # prepare mask for position embedding of block and offset tokens
287
+ block_mask = (0 <= codes) & (codes < self.block_size**3)
288
+ offset_mask = (self.block_size**3 <= codes) & (codes < self.block_size**3 + self.offset_size**3)
289
+ if self.use_special_block:
290
+ sp_block_mask = (
291
+ self.block_size**3 + self.offset_size**3 <= codes
292
+ ) & (
293
+ codes < self.block_size**3 + self.offset_size**3 + self.block_size**3
294
+ )
295
+
296
+
297
+ # get some variable
298
+
299
+ batch, seq_len, device = *codes.shape, codes.device
300
+
301
+ assert seq_len <= self.max_seq_len, \
302
+ f'received codes of length {seq_len} but needs to be less than {self.max_seq_len}'
303
+
304
+ # auto append eos token
305
+
306
+ if append_eos:
307
+ assert exists(codes)
308
+
309
+ code_lens = ((codes == self.pad_id).cumsum(dim = -1) == 0).sum(dim = -1)
310
+
311
+ codes = F.pad(codes, (0, 1), value = 0) # value=-1
312
+
313
+ batch_arange = torch.arange(batch, device = device)
314
+
315
+ batch_arange = rearrange(batch_arange, '... -> ... 1')
316
+ code_lens = rearrange(code_lens, '... -> ... 1')
317
+
318
+ codes[batch_arange, code_lens] = self.eos_token_id
319
+
320
+
321
+ # if returning loss, save the labels for cross entropy
322
+
323
+ if return_loss:
324
+ assert seq_len > 0
325
+ codes, labels = codes[:, :-1], codes
326
+
327
+ # token embed
328
+
329
+ codes = codes.masked_fill(codes == self.pad_id, 0)
330
+ codes = self.token_embed(codes)
331
+
332
+ # codebook embed + absolute positions
333
+
334
+ seq_arange = torch.arange(codes.shape[-2], device = device)
335
+ codes = codes + self.abs_pos_emb(seq_arange)
336
+
337
+ # add positional embedding for block and offset token
338
+ block_embed = repeat(self.block_embed, '1 d -> b n d', n = seq_len, b = batch)
339
+ offset_embed = repeat(self.offset_embed, '1 d -> b n d', n = seq_len, b = batch)
340
+ codes[block_mask] += block_embed[block_mask]
341
+ codes[offset_mask] += offset_embed[offset_mask]
342
+
343
+ if self.use_special_block:
344
+ sp_block_embed = repeat(self.sp_block_embed, '1 d -> b n d', n = seq_len, b = batch)
345
+ codes[sp_block_mask] += sp_block_embed[sp_block_mask]
346
+
347
+ # auto prepend sos token
348
+
349
+ sos = repeat(self.sos_token, 'd -> b d', b = batch)
350
+ codes, _ = pack([sos, codes], 'b * d')
351
+
352
+ # attention
353
+
354
+ attended, intermediates_with_cache = self.decoder(
355
+ codes,
356
+ cache = cache,
357
+ return_hiddens = True,
358
+ **attn_context_kwargs
359
+ )
360
+
361
+ # logits
362
+
363
+ logits = self.to_logits(attended)
364
+
365
+ if not return_loss:
366
+ if not return_cache:
367
+ return logits
368
+
369
+ return logits, intermediates_with_cache
370
+
371
+ # loss
372
+
373
+ ce_loss = F.cross_entropy(
374
+ rearrange(logits, 'b n c -> b c n'),
375
+ labels,
376
+ ignore_index = self.pad_id
377
+ )
378
+
379
+ return ce_loss
model/serializaiton.py ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import trimesh
2
+ import numpy as np
3
+ from .data_utils import discretize, undiscretize
4
+
5
+
6
+ def patchified_mesh(mesh: trimesh.Trimesh, special_token = -2, fix_orient=True):
7
+ sequence = []
8
+ unvisited = np.full(len(mesh.faces), True)
9
+ degrees = mesh.vertex_degree.copy()
10
+
11
+ # with fix_orient=True, the normal would be correct.
12
+ # but this may increase the difficulty for learning.
13
+ if fix_orient:
14
+ face_orient = {}
15
+ for ind, face in enumerate(mesh.faces):
16
+ v0, v1, v2 = face[0], face[1], face[2]
17
+ face_orient['{}-{}-{}'.format(v0, v1, v2)] = True
18
+ face_orient['{}-{}-{}'.format(v1, v2, v0)] = True
19
+ face_orient['{}-{}-{}'.format(v2, v0, v1)] = True
20
+ face_orient['{}-{}-{}'.format(v2, v1, v0)] = False
21
+ face_orient['{}-{}-{}'.format(v1, v0, v2)] = False
22
+ face_orient['{}-{}-{}'.format(v0, v2, v1)] = False
23
+
24
+ while sum(unvisited):
25
+ unvisited_faces = mesh.faces[unvisited]
26
+
27
+ # select the patch center
28
+ cur_face = unvisited_faces[0]
29
+ max_deg_vertex_id = np.argmax(degrees[cur_face])
30
+ max_deg_vertex = cur_face[max_deg_vertex_id]
31
+
32
+ # find all connected faces
33
+ selected_faces = []
34
+ for face_idx in mesh.vertex_faces[max_deg_vertex]:
35
+ if face_idx != -1 and unvisited[face_idx]:
36
+ face = mesh.faces[face_idx]
37
+ u, v = sorted([vertex for vertex in face if vertex != max_deg_vertex])
38
+ selected_faces.append([u, v, face_idx])
39
+
40
+ face_patch = set()
41
+ selected_faces = sorted(selected_faces)
42
+
43
+ # select the start vertex, select it if it only appears once (the start or end),
44
+ # else select the lowest index
45
+ cnt = {}
46
+ for u, v, _ in selected_faces:
47
+ cnt[u] = cnt.get(u, 0) + 1
48
+ cnt[v] = cnt.get(v, 0) + 1
49
+ starts = []
50
+ for vertex, num in cnt.items():
51
+ if num == 1:
52
+ starts.append(vertex)
53
+ start_idx = min(starts) if len(starts) else selected_faces[0][0]
54
+
55
+ res = [start_idx]
56
+ while len(res) <= len(selected_faces):
57
+ vertex = res[-1]
58
+ for u_i, v_i, face_idx_i in selected_faces:
59
+ if face_idx_i not in face_patch and vertex in (u_i, v_i):
60
+ u_i, v_i = (u_i, v_i) if vertex == u_i else (v_i, u_i)
61
+ res.append(v_i)
62
+ face_patch.add(face_idx_i)
63
+ break
64
+
65
+ if res[-1] == vertex:
66
+ break
67
+
68
+ if fix_orient and len(res) >= 2 and not face_orient['{}-{}-{}'.format(max_deg_vertex, res[0], res[1])]:
69
+ res = res[::-1]
70
+
71
+ # reduce the degree of related vertices and mark the visited faces
72
+ degrees[max_deg_vertex] = len(selected_faces) - len(res) + 1
73
+ for pos_idx, vertex in enumerate(res):
74
+ if pos_idx in [0, len(res) - 1]:
75
+ degrees[vertex] -= 1
76
+ else:
77
+ degrees[vertex] -= 2
78
+ for face_idx in face_patch:
79
+ unvisited[face_idx] = False
80
+ sequence.extend(
81
+ [mesh.vertices[max_deg_vertex]] +
82
+ [mesh.vertices[vertex_idx] for vertex_idx in res] +
83
+ [[special_token] * 3]
84
+ )
85
+
86
+ assert sum(degrees) == 0, 'All degrees should be zero'
87
+
88
+ return np.array(sequence)
89
+
90
+
91
+
92
+ def get_block_representation(
93
+ sequence,
94
+ block_size=8,
95
+ offset_size=16,
96
+ block_compressed=True,
97
+ special_token=-2,
98
+ use_special_block=True
99
+ ):
100
+ '''
101
+ convert coordinates from Cartesian system to block indexes.
102
+ '''
103
+ special_block_base = block_size**3 + offset_size**3
104
+ # prepare coordinates
105
+ sp_mask = sequence != special_token
106
+ sp_mask = np.all(sp_mask, axis=1)
107
+ coords = sequence[sp_mask].reshape(-1, 3)
108
+ coords = discretize(coords)
109
+
110
+ # convert [x, y, z] to [block_id, offset_id]
111
+ block_id = coords // offset_size
112
+ block_id = block_id[:, 0] * block_size**2 + block_id[:, 1] * block_size + block_id[:, 2]
113
+ offset_id = coords % offset_size
114
+ offset_id = offset_id[:, 0] * offset_size**2 + offset_id[:, 1] * offset_size + offset_id[:, 2]
115
+ offset_id += block_size**3
116
+ block_coords = np.concatenate([block_id[..., None], offset_id[..., None]], axis=-1).astype(np.int64)
117
+ sequence[:, :2][sp_mask] = block_coords
118
+ sequence = sequence[:, :2]
119
+
120
+ # convert to codes
121
+ codes = []
122
+ cur_block_id = sequence[0, 0]
123
+ codes.append(cur_block_id)
124
+ for i in range(len(sequence)):
125
+ if sequence[i, 0] == special_token:
126
+ if not use_special_block:
127
+ codes.append(special_token)
128
+ cur_block_id = special_token
129
+
130
+ elif sequence[i, 0] == cur_block_id:
131
+ if block_compressed:
132
+ codes.append(sequence[i, 1])
133
+ else:
134
+ codes.extend([sequence[i, 0], sequence[i, 1]])
135
+
136
+ else:
137
+ if use_special_block and cur_block_id == special_token:
138
+ block_id = sequence[i, 0] + special_block_base
139
+ else:
140
+ block_id = sequence[i, 0]
141
+ codes.extend([block_id, sequence[i, 1]])
142
+ cur_block_id = block_id
143
+
144
+ codes = np.array(codes).astype(np.int64)
145
+ sequence = codes
146
+
147
+ return sequence.flatten()
148
+
149
+
150
+ def BPT_serialize(mesh: trimesh.Trimesh):
151
+ # serialize mesh with BPT
152
+
153
+ # 1. patchify faces into patches
154
+ sequence = patchified_mesh(mesh, special_token=-2)
155
+
156
+ # 2. convert coordinates to block-wise indexes
157
+ codes = get_block_representation(
158
+ sequence, block_size=8, offset_size=16,
159
+ block_compressed=True, special_token=-2, use_special_block=True
160
+ )
161
+ return codes
162
+
163
+
164
+ def decode_block(sequence, compressed=True, block_size=8, offset_size=16):
165
+
166
+ # decode from compressed representation
167
+ if compressed:
168
+ res = []
169
+ res_block = 0
170
+ for token_id in range(len(sequence)):
171
+ if block_size**3 + offset_size**3 > sequence[token_id] >= block_size**3:
172
+ res.append([res_block, sequence[token_id]])
173
+ elif block_size**3 > sequence[token_id] >= 0:
174
+ res_block = sequence[token_id]
175
+ else:
176
+ print('[Warning] too large offset idx!', token_id, sequence[token_id])
177
+ sequence = np.array(res)
178
+
179
+ block_id, offset_id = np.array_split(sequence, 2, axis=-1)
180
+
181
+ # from hash representation to xyz
182
+ coords = []
183
+ offset_id -= block_size**3
184
+ for i in [2, 1, 0]:
185
+ axis = (block_id // block_size**i) * offset_size + (offset_id // offset_size**i)
186
+ block_id %= block_size**i
187
+ offset_id %= offset_size**i
188
+ coords.append(axis)
189
+
190
+ coords = np.concatenate(coords, axis=-1) # (nf 3)
191
+
192
+ # back to continuous space
193
+ coords = undiscretize(coords)
194
+
195
+ return coords
196
+
197
+
198
+ def BPT_deserialize(sequence, block_size=8, offset_size=16, compressed=True, special_token=-2, use_special_block=True):
199
+ # decode codes back to coordinates
200
+
201
+ special_block_base = block_size**3 + offset_size**3
202
+ start_idx = 0
203
+ vertices = []
204
+ for i in range(len(sequence)):
205
+ sub_seq = []
206
+ if not use_special_block and (sequence[i] == special_token or i == len(sequence) - 1):
207
+ sub_seq = sequence[start_idx:i]
208
+ sub_seq = decode_block(sub_seq, compressed=compressed, block_size=block_size, offset_size=offset_size)
209
+ start_idx = i + 1
210
+
211
+ elif use_special_block and \
212
+ (special_block_base <= sequence[i] < special_block_base + block_size**3 or i == len(sequence)-1):
213
+ if i != 0:
214
+ sub_seq = sequence[start_idx:i] if i != len(sequence) - 1 else sequence[start_idx: i+1]
215
+ if special_block_base <= sub_seq[0] < special_block_base + block_size**3:
216
+ sub_seq[0] -= special_block_base
217
+ sub_seq = decode_block(sub_seq, compressed=compressed, block_size=block_size, offset_size=offset_size)
218
+ start_idx = i
219
+
220
+ if len(sub_seq):
221
+ center, sub_seq = sub_seq[0], sub_seq[1:]
222
+ for j in range(len(sub_seq) - 1):
223
+ vertices.extend([center.reshape(1, 3), sub_seq[j].reshape(1, 3), sub_seq[j+1].reshape(1, 3)])
224
+
225
+ # (nf, 3)
226
+ return np.concatenate(vertices, axis=0)
227
+
228
+
229
+ if __name__ == '__main__':
230
+ # a simple demo for serialize and deserialize mesh with bpt
231
+ from data_utils import load_process_mesh, to_mesh
232
+ import torch
233
+ mesh = load_process_mesh('/path/to/your/mesh', quantization_bits=7)
234
+ mesh['faces'] = np.array(mesh['faces'])
235
+ mesh = to_mesh(mesh['vertices'], mesh['faces'], transpose=True)
236
+ mesh.export('gt.obj')
237
+ codes = BPT_serialize(mesh)
238
+ coordinates = BPT_deserialize(codes)
239
+ faces = torch.arange(1, len(coordinates) + 1).view(-1, 3)
240
+ mesh = to_mesh(coordinates, faces, transpose=False, post_process=False)
241
+ mesh.export('reconstructed.obj')
requirements.txt ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ meshgpt_pytorch==0.6.7
2
+ pytorch-custom-utils==0.0.21
3
+ accelerate>=0.25.0
4
+ beartype
5
+ classifier-free-guidance-pytorch==0.5.1
6
+ einops>=0.7.0
7
+ ema-pytorch
8
+ pytorch-warmup
9
+ torch_geometric
10
+ torchtyping
11
+ vector-quantize-pytorch==1.12.8
12
+ x-transformers==1.26.6
13
+ tqdm
14
+ matplotlib
15
+ wandb
16
+ pyrr
17
+ trimesh
18
+ opencv-python
19
+ pyrender
20
+ open3d-python
21
+ easydict
22
+ chardet
23
+ deepspeed
24
+ omegaconf
25
+ scikit-image
26
+ setuptools
27
+ pytorch_lightning
28
+ mesh2sdf
29
+ numpy==1.26.4
30
+ point-cloud-utils
utils.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import trimesh
2
+ import numpy as np
3
+ from x_transformers.autoregressive_wrapper import top_p, top_k
4
+
5
+
6
+ class Dataset:
7
+ '''
8
+ A toy dataset for inference
9
+ '''
10
+ def __init__(self, input_type, input_list):
11
+ super().__init__()
12
+ self.data = []
13
+ if input_type == 'pc_normal':
14
+ for input_path in input_list:
15
+ # load npy
16
+ cur_data = np.load(input_path)
17
+ # sample 4096
18
+ assert cur_data.shape[0] >= 4096, "input pc_normal should have at least 4096 points"
19
+ idx = np.random.choice(cur_data.shape[0], 4096, replace=False)
20
+ cur_data = cur_data[idx]
21
+ self.data.append({'pc_normal': cur_data, 'uid': input_path.split('/')[-1].split('.')[0]})
22
+
23
+ elif input_type == 'mesh':
24
+ mesh_list, pc_list = [], []
25
+ for input_path in input_list:
26
+ # sample point cloud and normal from mesh
27
+ cur_data = trimesh.load(input_path, force='mesh')
28
+ cur_data = apply_normalize(cur_data)
29
+ mesh_list.append(cur_data)
30
+ pc_list.append(sample_pc(cur_data, pc_num=4096, with_normal=True))
31
+
32
+ for input_path, cur_data in zip(input_list, pc_list):
33
+ self.data.append({'pc_normal': cur_data, 'uid': input_path.split('/')[-1].split('.')[0]})
34
+
35
+ print(f"dataset total data samples: {len(self.data)}")
36
+
37
+ def __len__(self):
38
+ return len(self.data)
39
+
40
+ def __getitem__(self, idx):
41
+ data_dict = {}
42
+ data_dict['pc_normal'] = self.data[idx]['pc_normal']
43
+ data_dict['uid'] = self.data[idx]['uid']
44
+
45
+ return data_dict
46
+
47
+
48
+ def joint_filter(logits, k = 50, p=0.95):
49
+ logits = top_k(logits, k = k)
50
+ logits = top_p(logits, thres = p)
51
+ return logits
52
+
53
+
54
+ def apply_normalize(mesh):
55
+ '''
56
+ normalize mesh to [-1, 1]
57
+ '''
58
+ bbox = mesh.bounds
59
+ center = (bbox[1] + bbox[0]) / 2
60
+ scale = (bbox[1] - bbox[0]).max()
61
+
62
+ mesh.apply_translation(-center)
63
+ mesh.apply_scale(1 / scale * 2 * 0.95)
64
+
65
+ return mesh
66
+
67
+
68
+
69
+ def sample_pc(mesh_path, pc_num, with_normal=False):
70
+
71
+ mesh = trimesh.load(mesh_path, force='mesh', process=False)
72
+ mesh = apply_normalize(mesh)
73
+
74
+ if not with_normal:
75
+ points, _ = mesh.sample(pc_num, return_index=True)
76
+ return points
77
+
78
+ points, face_idx = mesh.sample(50000, return_index=True)
79
+ normals = mesh.face_normals[face_idx]
80
+ pc_normal = np.concatenate([points, normals], axis=-1, dtype=np.float16)
81
+
82
+ # random sample point cloud
83
+ ind = np.random.choice(pc_normal.shape[0], pc_num, replace=False)
84
+ pc_normal = pc_normal[ind]
85
+
86
+ return pc_normal
87
+
88
+