Spaces:
Runtime error
Runtime error
File size: 961 Bytes
9abef9f 8521848 9abef9f 447cdd5 e39d03a 5d0802c a9eaf12 8521848 447cdd5 8521848 78f684b 9abef9f e39d03a bd25240 e39d03a 9abef9f 447cdd5 9abef9f 447cdd5 9abef9f 8521848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
from fastai.vision.all import *
import skimage
import os
title = "Open/Closed Door Classifier"
description = "A classifier trained using fastai on search images of open and closed doors." \
"Created for Lesson 2 in the fastai course."
examples = ["open-door.jpg",
"crack_2.jpg", "red_arch.jpg",
"green.jpg", "red.jpg", "opening_door.jpg",
"inside.jpg", "cracked_3.jpg", "old.jpg",
"blue.jpg"]
examples = list(
map(
lambda x: "examples/" + x,
examples))
#print(examples)
learn = load_learner('door_model.pkl')
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
iface = gr.Interface(
fn=predict,
inputs=gr.Image(shape=(224, 224)),
outputs=gr.Label(),
title=title,
description=description,
examples=examples)
iface.launch()
|