leaderboard / app.py
sanchit-gandhi's picture
Create app.py
1652e87
raw
history blame
9.86 kB
import pandas as pd
import streamlit as st
from huggingface_hub import HfApi
from utils import ascending_metrics, metric_ranges, CV11_LANGUAGES, FLEURS_LANGUAGES
import numpy as np
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode
from os.path import exists
import threading
st.set_page_config(layout="wide")
def get_model_infos():
api = HfApi()
model_infos = api.list_models(filter="model-index", cardData=True)
return model_infos
def parse_metric_value(value):
if isinstance(value, str):
"".join(value.split("%"))
try:
value = float(value)
except: # noqa: E722
value = None
elif isinstance(value, list):
if len(value) > 0:
value = value[0]
else:
value = None
value = round(value, 4) if isinstance(value, float) else None
return value
def parse_metrics_rows(meta, only_verified=False):
if not isinstance(meta["model-index"], list) or len(meta["model-index"]) == 0 or "results" not in meta["model-index"][0]:
return None
for result in meta["model-index"][0]["results"]:
if not isinstance(result, dict) or "dataset" not in result or "metrics" not in result or "type" not in result["dataset"]:
continue
dataset = result["dataset"]["type"]
if dataset == "":
continue
row = {"dataset": dataset, "split": "-unspecified-", "config": "-unspecified-"}
if "split" in result["dataset"]:
row["split"] = result["dataset"]["split"]
if "config" in result["dataset"]:
row["config"] = result["dataset"]["config"]
no_results = True
incorrect_results = False
for metric in result["metrics"]:
name = metric["type"].lower().strip()
if name in ("model_id", "dataset", "split", "config", "pipeline_tag", "only_verified"):
# Metrics are not allowed to be named "dataset", "split", "config", "pipeline_tag"
continue
value = parse_metric_value(metric.get("value", None))
if value is None:
continue
if name in row:
new_metric_better = value < row[name] if name in ascending_metrics else value > row[name]
if name not in row or new_metric_better:
# overwrite the metric if the new value is better.
if only_verified:
if "verified" in metric and metric["verified"]:
no_results = False
row[name] = value
if name in metric_ranges:
if value < metric_ranges[name][0] or value > metric_ranges[name][1]:
incorrect_results = True
else:
no_results = False
row[name] = value
if name in metric_ranges:
if value < metric_ranges[name][0] or value > metric_ranges[name][1]:
incorrect_results = True
if no_results or incorrect_results:
continue
yield row
@st.cache(ttl=0)
def get_data_wrapper():
def get_data(dataframe=None, verified_dataframe=None):
data = []
verified_data = []
print("getting model infos")
model_infos = get_model_infos()
print("got model infos")
for model_info in model_infos:
meta = model_info.cardData
if meta is None:
continue
for row in parse_metrics_rows(meta):
if row is None:
continue
row["model_id"] = model_info.id
row["pipeline_tag"] = model_info.pipeline_tag
row["only_verified"] = False
data.append(row)
for row in parse_metrics_rows(meta, only_verified=True):
if row is None:
continue
row["model_id"] = model_info.id
row["pipeline_tag"] = model_info.pipeline_tag
row["only_verified"] = True
data.append(row)
dataframe = pd.DataFrame.from_records(data)
dataframe.to_pickle("cache.pkl")
if exists("cache.pkl"):
# If we have saved the results previously, call an asynchronous process
# to fetch the results and update the saved file. Don't make users wait
# while we fetch the new results. Instead, display the old results for
# now. The new results should be loaded when this method
# is called again.
dataframe = pd.read_pickle("cache.pkl")
t = threading.Thread(name="get_data procs", target=get_data)
t.start()
else:
# We have to make the users wait during the first startup of this app.
get_data()
dataframe = pd.read_pickle("cache.pkl")
return dataframe
dataframe = get_data_wrapper()
st.markdown("# πŸ€— Whisper Event: Final Leaderboard")
# query params are used to refine the browser URL as more options are selected
query_params = st.experimental_get_query_params()
if "first_query_params" not in st.session_state:
st.session_state.first_query_params = query_params
first_query_params = st.session_state.first_query_params
# define the scope of the leaderboard
only_verified_results = False
task = "automatic-speech-recognition"
selectable_datasets = ["mozilla-foundation/common_voice_11_0", "google/fleurs"]
dataset_mapping = {"mozilla-foundation/common_voice_11_0": "Common Voice 11", "google/fleurs": "FLEURS"} # get a 'pretty' name for our datasets
split = "test"
selectable_metrics = ["wer", "cer"]
default_metric = selectable_metrics[0]
# select dataset from list provided
dataset = st.sidebar.selectbox(
"Dataset",
selectable_datasets,
help="Select a dataset to see the leaderboard!"
)
dataset_name = dataset_mapping[dataset]
# slice dataframe to entries of interest
dataframe = dataframe[dataframe.only_verified == only_verified_results]
dataset_df = dataframe[dataframe.dataset == dataset]
dataset_df = dataset_df[dataset_df.split == split] # hardcoded to "test"
dataset_df = dataset_df.dropna(axis="columns", how="all")
# get potential dataset configs (languages)
selectable_configs = list(set(dataset_df["config"]))
selectable_configs.sort(key=lambda name: name.lower())
if "-unspecified-" in selectable_configs:
selectable_configs.remove("-unspecified-")
if dataset == "mozilla-foundation/common_voice_11_0":
selectable_configs = [config for config in selectable_configs if config in CV11_LANGUAGES]
visual_configs = [f"{config}: {CV11_LANGUAGES[config]}" for config in selectable_configs]
elif dataset == "google/fleurs":
selectable_configs = [config for config in selectable_configs if config in FLEURS_LANGUAGES]
visual_configs = [f"{config}: {FLEURS_LANGUAGES[config]}" for config in selectable_configs]
config = st.sidebar.selectbox(
"Language",
visual_configs,
help="Filter the results on the current leaderboard by language."
)
config, language = config.split(":")
# just for show -> we've fixed the split to "test"
split = st.sidebar.selectbox(
"Split",
[split],
index=0,
help="View the results for the `test` split for evaluation performance.",
)
# update browser URL with selections
current_query_params = {"dataset": [dataset], "config": [config], "split": split}
st.experimental_set_query_params(**current_query_params)
dataset_df = dataset_df[dataset_df.config == config]
dataset_df = dataset_df.filter(["model_id"] + (["dataset"] if dataset == "-any-" else []) + selectable_metrics)
dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
sorting_metric = st.sidebar.radio(
"Sorting Metric",
selectable_metrics,
index=selectable_metrics.index(default_metric) if default_metric in selectable_metrics else 0,
help="Select the metric to sort the leaderboard by. Click on the metric name in the leaderboard to reverse the sorting order."
)
st.markdown(
f"This is the leaderboard for {dataset_name} {language} ({config})."
)
st.markdown(
"Please click on the model's name to be redirected to its model card."
)
st.markdown(
"Want to beat the leaderboard? Don't see your model here? Ensure..."
)
# Make the default metric appear right after model names and dataset names
cols = dataset_df.columns.tolist()
cols.remove(sorting_metric)
sorting_metric_index = 1 if dataset != "-any-" else 2
cols = cols[:sorting_metric_index] + [sorting_metric] + cols[sorting_metric_index:]
dataset_df = dataset_df[cols]
# Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values.
dataset_df = dataset_df.sort_values(by=cols[sorting_metric_index:], ascending=[metric in ascending_metrics for metric in cols[sorting_metric_index:]])
dataset_df = dataset_df.replace(np.nan, '-')
# Make the leaderboard
gb = GridOptionsBuilder.from_dataframe(dataset_df)
gb.configure_default_column(sortable=False)
gb.configure_column(
"model_id",
cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
)
for name in selectable_metrics:
gb.configure_column(name, type=["numericColumn", "numberColumnFilter", "customNumericFormat"], precision=2, aggFunc='sum')
gb.configure_column(
sorting_metric,
sortable=True,
cellStyle=JsCode('''function(params) { return {'backgroundColor': '#FFD21E'}}''')
)
go = gb.build()
fit_columns = len(dataset_df.columns) < 10
AgGrid(dataset_df, gridOptions=go, height=28*len(dataset_df) + (35 if fit_columns else 41), allow_unsafe_jscode=True, fit_columns_on_grid_load=fit_columns, enable_enterprise_modules=False)