Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +3 -10
- requirements.txt +3 -3
app.py
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
from diffusers import DiffusionPipeline
|
| 4 |
from transformers import (
|
| 5 |
WhisperForConditionalGeneration,
|
| 6 |
WhisperProcessor,
|
| 7 |
-
pipeline,
|
| 8 |
)
|
| 9 |
|
| 10 |
import os
|
|
@@ -14,12 +14,10 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 14 |
model = WhisperForConditionalGeneration.from_pretrained("whispy/whisper_italian").to(device)
|
| 15 |
processor = WhisperProcessor.from_pretrained("whispy/whisper_italian")
|
| 16 |
|
| 17 |
-
pipe = pipeline(model="whispy/whisper_italian")
|
| 18 |
-
|
| 19 |
diffuser_pipeline = DiffusionPipeline.from_pretrained(
|
| 20 |
"CompVis/stable-diffusion-v1-4",
|
| 21 |
custom_pipeline="speech_to_image_diffusion",
|
| 22 |
-
speech_model=
|
| 23 |
speech_processor=processor,
|
| 24 |
use_auth_token=MY_SECRET_TOKEN,
|
| 25 |
revision="fp16",
|
|
@@ -29,10 +27,6 @@ diffuser_pipeline = DiffusionPipeline.from_pretrained(
|
|
| 29 |
diffuser_pipeline.enable_attention_slicing()
|
| 30 |
diffuser_pipeline = diffuser_pipeline.to(device)
|
| 31 |
|
| 32 |
-
def transcribe(audio):
|
| 33 |
-
text = pipe(audio)["text"]
|
| 34 |
-
return text
|
| 35 |
-
|
| 36 |
|
| 37 |
#ββββββββββββββββββββββββββββββββββββββββββββ
|
| 38 |
# GRADIO SETUP
|
|
@@ -51,8 +45,7 @@ image_output = gr.Image()
|
|
| 51 |
|
| 52 |
def speech_to_text(audio_sample):
|
| 53 |
|
| 54 |
-
|
| 55 |
-
process_audio = transcribe(audio_sample)
|
| 56 |
output = diffuser_pipeline(process_audio)
|
| 57 |
|
| 58 |
print(f"""
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
import whisper
|
| 4 |
from diffusers import DiffusionPipeline
|
| 5 |
from transformers import (
|
| 6 |
WhisperForConditionalGeneration,
|
| 7 |
WhisperProcessor,
|
|
|
|
| 8 |
)
|
| 9 |
|
| 10 |
import os
|
|
|
|
| 14 |
model = WhisperForConditionalGeneration.from_pretrained("whispy/whisper_italian").to(device)
|
| 15 |
processor = WhisperProcessor.from_pretrained("whispy/whisper_italian")
|
| 16 |
|
|
|
|
|
|
|
| 17 |
diffuser_pipeline = DiffusionPipeline.from_pretrained(
|
| 18 |
"CompVis/stable-diffusion-v1-4",
|
| 19 |
custom_pipeline="speech_to_image_diffusion",
|
| 20 |
+
speech_model=model,
|
| 21 |
speech_processor=processor,
|
| 22 |
use_auth_token=MY_SECRET_TOKEN,
|
| 23 |
revision="fp16",
|
|
|
|
| 27 |
diffuser_pipeline.enable_attention_slicing()
|
| 28 |
diffuser_pipeline = diffuser_pipeline.to(device)
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
#ββββββββββββββββββββββββββββββββββββββββββββ
|
| 32 |
# GRADIO SETUP
|
|
|
|
| 45 |
|
| 46 |
def speech_to_text(audio_sample):
|
| 47 |
|
| 48 |
+
process_audio = whisper.load_audio(audio_sample)
|
|
|
|
| 49 |
output = diffuser_pipeline(process_audio)
|
| 50 |
|
| 51 |
print(f"""
|
requirements.txt
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
-
transformers
|
| 2 |
-
torch
|
| 3 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 4 |
torch
|
| 5 |
scipy
|
| 6 |
ftfy
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 2 |
torch
|
| 3 |
scipy
|
| 4 |
ftfy
|
| 5 |
+
git+https://github.com/huggingface/transformers
|
| 6 |
+
git+https://github.com/huggingface/diffusers
|
| 7 |
+
git+https://github.com/openai/whisper.git
|