Spaces:
Runtime error
Runtime error
Upload 9 files
Browse files- app.py +17 -45
- detokenizer.py +32 -0
- model2_data/bpecode.en +0 -0
- model2_data/bpecode.zh +0 -0
- model2_data/dict.zh.txt +0 -0
- requirements.txt +6 -1
- tokenizer.py +78 -0
- translater.py +35 -0
app.py
CHANGED
@@ -6,50 +6,22 @@
|
|
6 |
|
7 |
import gradio as gr
|
8 |
|
9 |
-
import
|
10 |
-
from
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
lenth2 = len(source2)
|
27 |
-
|
28 |
-
results = []
|
29 |
-
results2 = []
|
30 |
-
|
31 |
-
if mode == "汉译英" :
|
32 |
-
results = translator_zh2en.translate_batch(source)##翻译的分词分句
|
33 |
-
results2 = translator2_zh2en.translate_batch(source2)##翻译的分词分句
|
34 |
-
else :
|
35 |
-
results = translator_en2zh.translate_batch(source)##翻译的分词分句
|
36 |
-
results2 = translator2_en2zh.translate_batch(source2)##翻译的分词分句
|
37 |
-
|
38 |
-
target = []
|
39 |
-
target2 = []
|
40 |
-
|
41 |
-
for i in range(0, lenth, 1):
|
42 |
-
target = target + results[i].hypotheses[0]
|
43 |
-
for i in range(0, lenth2, 1):
|
44 |
-
target2 = target2 + results2[i].hypotheses[0]
|
45 |
-
|
46 |
-
#print(results[0].hypotheses[0])##results[0]为第0句,hypotheses[0]保持0
|
47 |
-
##print(results[1].hypotheses[0])
|
48 |
-
#return results[0].hypotheses[0]
|
49 |
-
return ' '.join(target),' '.join(target2)
|
50 |
-
|
51 |
-
demo = gr.Interface(fn=translate,
|
52 |
-
inputs=["text", "text", gr.Dropdown(["汉译英", "英译汉"])],
|
53 |
-
outputs=["text", "text"],)
|
54 |
|
55 |
demo.launch()
|
|
|
6 |
|
7 |
import gradio as gr
|
8 |
|
9 |
+
from tokenizer import tokenize, tokenize2
|
10 |
+
from translater import translate
|
11 |
+
from detokenizer import detokenize, detokenize2
|
12 |
+
|
13 |
+
def run(source_text, mode):
|
14 |
+
source_tokens = tokenize(source_text, mode)
|
15 |
+
source_tokens2 = tokenize2(source_text, mode)
|
16 |
+
source_tokenized_text = ' '.join(source_tokens)
|
17 |
+
target_tokens, target_tokens2 = translate(source_tokens, source_tokens2, mode)
|
18 |
+
target_text = detokenize(target_tokens, mode)
|
19 |
+
target_text2 = detokenize2(target_tokens2, mode)
|
20 |
+
return target_text, target_text2, source_tokenized_text
|
21 |
+
|
22 |
+
|
23 |
+
demo = gr.Interface(fn=run,
|
24 |
+
inputs=["text", gr.Dropdown(["汉译英", "英译汉"])],
|
25 |
+
outputs=["text", "text", "text"],)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
demo.launch()
|
detokenizer.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import sys
|
3 |
+
from sacremoses import MosesDetokenizer
|
4 |
+
|
5 |
+
md_en = MosesDetokenizer(lang='en')
|
6 |
+
md_zh = MosesDetokenizer(lang='zh')
|
7 |
+
|
8 |
+
def moses_detokenize(tokens, language='en'):
|
9 |
+
en_detokenizer = MosesDetokenizer(lang=language)
|
10 |
+
|
11 |
+
stdout = en_detokenizer.detokenize(tokens,return_str=True)
|
12 |
+
|
13 |
+
# 返回处理后的句子
|
14 |
+
return stdout.strip()
|
15 |
+
|
16 |
+
def detokenize(tokens, mode):
|
17 |
+
if mode == "汉译英" :
|
18 |
+
text = moses_detokenize(tokens)
|
19 |
+
text = re.sub(r" n't", "n't",text)
|
20 |
+
else :
|
21 |
+
text = ''.join(tokens)
|
22 |
+
|
23 |
+
return text
|
24 |
+
|
25 |
+
def detokenize2(tokens, mode):
|
26 |
+
if mode == "汉译英" :
|
27 |
+
answer_en_bpe = md_en.detokenize(tokens,return_str=True)
|
28 |
+
text = re.sub(r"@@ ", "",answer_en_bpe)
|
29 |
+
else :
|
30 |
+
answer_zh_bpe = md_zh.detokenize(tokens,return_str=True)
|
31 |
+
text = re.sub(r"@@ ", "",answer_zh_bpe)
|
32 |
+
return text
|
model2_data/bpecode.en
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model2_data/bpecode.zh
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model2_data/dict.zh.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
CHANGED
@@ -1 +1,6 @@
|
|
1 |
-
ctranslate2==4.1.0
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ctranslate2==4.1.0
|
2 |
+
spacy==3.7.4
|
3 |
+
nltk==3.8.1
|
4 |
+
jieba==0.42.1
|
5 |
+
sacremoses==0.1.1
|
6 |
+
subword_nmt==0.3.8
|
tokenizer.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spacy
|
2 |
+
from spacy.tokens import Doc
|
3 |
+
|
4 |
+
# 加载英文模型
|
5 |
+
nlp = spacy.load('en_core_web_sm')
|
6 |
+
|
7 |
+
import nltk
|
8 |
+
from nltk.tokenize import word_tokenize
|
9 |
+
|
10 |
+
import jieba
|
11 |
+
|
12 |
+
from sacremoses import MosesTokenizer
|
13 |
+
from subword_nmt import apply_bpe
|
14 |
+
import codecs
|
15 |
+
|
16 |
+
jieba1 = jieba.Tokenizer()
|
17 |
+
jieba2 = jieba.Tokenizer()
|
18 |
+
jieba2.load_userdict('model2_data/dict.zh.txt')
|
19 |
+
|
20 |
+
mt_zh = MosesTokenizer(lang='zh')
|
21 |
+
with codecs.open('model2_data/bpecode.zh', 'r', 'utf-8') as f:
|
22 |
+
bpe_zh_f = apply_bpe.BPE(f)
|
23 |
+
|
24 |
+
#英文部分初始化,定义tokenize等等
|
25 |
+
mt_en = MosesTokenizer(lang='en')
|
26 |
+
with codecs.open('model2_data/bpecode.en', 'r', 'utf-8') as f:
|
27 |
+
bpe_en_f = apply_bpe.BPE(f)
|
28 |
+
|
29 |
+
def spacy_tokenize(line):
|
30 |
+
# 使用spaCy处理文本
|
31 |
+
doc = nlp(line)
|
32 |
+
# 获取单词列表
|
33 |
+
words = [token.text for token in doc]
|
34 |
+
# 将单词连接成一个字符串,单词间用一个空格间隔
|
35 |
+
return ' '.join(words)
|
36 |
+
|
37 |
+
|
38 |
+
def nltk_tokenize(line):
|
39 |
+
# 使用NLTK的word_tokenize进行分词
|
40 |
+
tokens = word_tokenize(line)
|
41 |
+
#print(tokens)
|
42 |
+
return tokens
|
43 |
+
|
44 |
+
|
45 |
+
def jieba_tokenize(line):
|
46 |
+
# 使用jieba进行分词
|
47 |
+
tokens = list(jieba1.cut(line.strip())) # strip用于去除可能的空白字符
|
48 |
+
#print(tokens)
|
49 |
+
return tokens
|
50 |
+
|
51 |
+
def tokenize(line, mode):
|
52 |
+
if mode == "汉译英" :
|
53 |
+
return jieba_tokenize(line)
|
54 |
+
else :
|
55 |
+
return nltk_tokenize(spacy_tokenize(line))
|
56 |
+
|
57 |
+
|
58 |
+
def jieba_tokenize2(line):
|
59 |
+
tokens = list(jieba2.cut(line.strip()))
|
60 |
+
return tokens
|
61 |
+
|
62 |
+
def mt_bpe_zh(line):
|
63 |
+
zh_tok = mt_zh.tokenize(line)
|
64 |
+
bpe_zh = bpe_zh_f.segment_tokens(zh_tok)
|
65 |
+
print(bpe_zh)
|
66 |
+
return bpe_zh
|
67 |
+
|
68 |
+
def mt_bpe_en(line):
|
69 |
+
en_tok = mt_en.tokenize(line)
|
70 |
+
bpe_en = bpe_en_f.segment_tokens(en_tok)
|
71 |
+
print(bpe_en)
|
72 |
+
return bpe_en
|
73 |
+
|
74 |
+
def tokenize2(line, mode):
|
75 |
+
if mode == "汉译英" :
|
76 |
+
return mt_bpe_zh(' '.join(jieba_tokenize2(line)))
|
77 |
+
else :
|
78 |
+
return mt_bpe_en(line)
|
translater.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ctranslate2
|
2 |
+
from split import split_string
|
3 |
+
|
4 |
+
translator_zh2en = ctranslate2.Translator("zh-en_model/", device="cpu")##路径
|
5 |
+
translator2_zh2en = ctranslate2.Translator("zh2en_cmodel/", device="cpu")##路径
|
6 |
+
translator_en2zh = ctranslate2.Translator("en-zh_model/", device="cpu")##路径
|
7 |
+
translator2_en2zh = ctranslate2.Translator("en2zh_cmodel", device="cpu")##路径
|
8 |
+
|
9 |
+
def translate(input_tokens, input_tokens2, mode):
|
10 |
+
|
11 |
+
source = split_string(input_tokens)
|
12 |
+
lenth = len(source)
|
13 |
+
|
14 |
+
source2 = split_string(input_tokens2)
|
15 |
+
lenth2 = len(source2)
|
16 |
+
|
17 |
+
if mode == "汉译英" :
|
18 |
+
results = translator_zh2en.translate_batch(source)##翻译的分词分句
|
19 |
+
results2 = translator2_zh2en.translate_batch(source2)##翻译的分词分句
|
20 |
+
else :
|
21 |
+
results = translator_en2zh.translate_batch(source)##翻译的分词分句
|
22 |
+
results2 = translator2_en2zh.translate_batch(source2)##翻译的分词分句
|
23 |
+
|
24 |
+
target = []
|
25 |
+
target2 = []
|
26 |
+
|
27 |
+
for i in range(0, lenth, 1):
|
28 |
+
target = target + results[i].hypotheses[0]
|
29 |
+
for i in range(0, lenth2, 1):
|
30 |
+
target2 = target2 + results2[i].hypotheses[0]
|
31 |
+
|
32 |
+
#print(results[0].hypotheses[0])##results[0]为第0句,hypotheses[0]保持0
|
33 |
+
##print(results[1].hypotheses[0])
|
34 |
+
#return results[0].hypotheses[0]
|
35 |
+
return target,target2
|