mayanku1111
Add application file
1b25996
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import random
from datetime import datetime
@st.cache_resource
def load_model():
model_path = "whitepenguin/llama_elon_character"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
return tokenizer, model
tokenizer, model = load_model()
elon_profile = {
"name": "Elon Musk",
"traits": ["visionary", "ambitious", "technical", "optimistic", "workaholic"],
"background": "Founder of SpaceX and Tesla, focused on advancing space exploration and sustainable energy",
"goals": ["Colonize Mars", "Make life multi-planetary", "Advance sustainable technology"],
"speech_patterns": ["Actually,", "To be frank,", "The future of humanity is...", "It's quite simple:"],
"knowledge_areas": ["rocket science", "electric vehicles", "solar energy", "artificial intelligence"]
}
def generate_response(prompt, max_new_tokens, temperature=0.7, context=""):
full_prompt = f"[INST] <<SYS>>\nYou are roleplaying as {elon_profile['name']}. Your traits are {', '.join(elon_profile['traits'])}. Your background: {elon_profile['background']}. Your main goals are {', '.join(elon_profile['goals'])}. You have expertise in {', '.join(elon_profile['knowledge_areas'])}. Here's the context of previous conversations:\n\n{context}\n\nNow, respond to the following in character:\n\n{prompt}\n<</SYS>>\n\nProvide a response and then ask a follow-up question to continue the conversation about Mars colonization. [/INST]"
gen = pipeline('text-generation', model=model, tokenizer=tokenizer, max_length=len(tokenizer(full_prompt)['input_ids']) + max_new_tokens, temperature=temperature, top_p=0.9, repetition_penalty=1.1)
result = gen(full_prompt)
return result[0]['generated_text'].replace(full_prompt, '')
def apply_character_quirks(response):
if random.random() < 0.3:
pattern = random.choice(elon_profile['speech_patterns'])
response = f"{pattern} {response}"
if not any(area in response.lower() for area in elon_profile['knowledge_areas']):
area = random.choice(elon_profile['knowledge_areas'])
response += f" Of course, this ties into my work with {area}."
return response
def elon_mars_chat(message, chat_history):
recent_context = "\n".join([f"{entry['role']}: {entry['content']}" for entry in chat_history[-5:]])
response = generate_response(message, max_new_tokens=200, context=recent_context)
response = apply_character_quirks(response)
parts = response.split("Follow-up question:", 1)
elon_response = parts[0].strip()
follow_up = parts[1].strip() if len(parts) > 1 else "What else would you like to know about Mars colonization?"
formatted_response = f"{elon_response}\n\nFollow-up question: {follow_up}"
chat_history.append({"role": "User", "content": message, "timestamp": str(datetime.now())})
chat_history.append({"role": "Elon Musk", "content": formatted_response, "timestamp": str(datetime.now())})
return formatted_response, chat_history
st.title("Chat with Elon Musk about Anything")
st.write("Engage in a conversation with a simulated Elon Musk")
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
for message in st.session_state.chat_history:
with st.chat_message(message["role"]):
st.write(message["content"])
user_input = st.chat_input("Ask your question about Mars colonization:")
if user_input:
st.chat_message("User").write(user_input)
with st.chat_message("Elon Musk"):
with st.spinner("Thinking..."):
response, st.session_state.chat_history = elon_mars_chat(user_input, st.session_state.chat_history)
st.write(response)