import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import random from datetime import datetime @st.cache_resource def load_model(): model_path = "whitepenguin/llama_elon_character" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path) return tokenizer, model tokenizer, model = load_model() elon_profile = { "name": "Elon Musk", "traits": ["visionary", "ambitious", "technical", "optimistic", "workaholic"], "background": "Founder of SpaceX and Tesla, focused on advancing space exploration and sustainable energy", "goals": ["Colonize Mars", "Make life multi-planetary", "Advance sustainable technology"], "speech_patterns": ["Actually,", "To be frank,", "The future of humanity is...", "It's quite simple:"], "knowledge_areas": ["rocket science", "electric vehicles", "solar energy", "artificial intelligence"] } def generate_response(prompt, max_new_tokens, temperature=0.7, context=""): full_prompt = f"[INST] <>\nYou are roleplaying as {elon_profile['name']}. Your traits are {', '.join(elon_profile['traits'])}. Your background: {elon_profile['background']}. Your main goals are {', '.join(elon_profile['goals'])}. You have expertise in {', '.join(elon_profile['knowledge_areas'])}. Here's the context of previous conversations:\n\n{context}\n\nNow, respond to the following in character:\n\n{prompt}\n<>\n\nProvide a response and then ask a follow-up question to continue the conversation about Mars colonization. [/INST]" gen = pipeline('text-generation', model=model, tokenizer=tokenizer, max_length=len(tokenizer(full_prompt)['input_ids']) + max_new_tokens, temperature=temperature, top_p=0.9, repetition_penalty=1.1) result = gen(full_prompt) return result[0]['generated_text'].replace(full_prompt, '') def apply_character_quirks(response): if random.random() < 0.3: pattern = random.choice(elon_profile['speech_patterns']) response = f"{pattern} {response}" if not any(area in response.lower() for area in elon_profile['knowledge_areas']): area = random.choice(elon_profile['knowledge_areas']) response += f" Of course, this ties into my work with {area}." return response def elon_mars_chat(message, chat_history): recent_context = "\n".join([f"{entry['role']}: {entry['content']}" for entry in chat_history[-5:]]) response = generate_response(message, max_new_tokens=200, context=recent_context) response = apply_character_quirks(response) parts = response.split("Follow-up question:", 1) elon_response = parts[0].strip() follow_up = parts[1].strip() if len(parts) > 1 else "What else would you like to know about Mars colonization?" formatted_response = f"{elon_response}\n\nFollow-up question: {follow_up}" chat_history.append({"role": "User", "content": message, "timestamp": str(datetime.now())}) chat_history.append({"role": "Elon Musk", "content": formatted_response, "timestamp": str(datetime.now())}) return formatted_response, chat_history st.title("Chat with Elon Musk about Anything") st.write("Engage in a conversation with a simulated Elon Musk") if 'chat_history' not in st.session_state: st.session_state.chat_history = [] for message in st.session_state.chat_history: with st.chat_message(message["role"]): st.write(message["content"]) user_input = st.chat_input("Ask your question about Mars colonization:") if user_input: st.chat_message("User").write(user_input) with st.chat_message("Elon Musk"): with st.spinner("Thinking..."): response, st.session_state.chat_history = elon_mars_chat(user_input, st.session_state.chat_history) st.write(response)