
whitphx
HF Staff
Update index.html to use .to_numpy, which was renamed in [email protected]
1d3a942
verified
<html> | |
<head> | |
<meta charset="utf-8"> | |
<meta name="viewport" content="width=device-width, initial-scale=1"> | |
<title>Gradio-Lite: Serverless Gradio Running Entirely in Your Browser</title> | |
<meta name="description" content="Gradio-Lite: Serverless Gradio Running Entirely in Your Browser"> | |
<script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script> | |
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" /> | |
<style> | |
html, body { | |
margin: 0; | |
padding: 0; | |
height: 100%; | |
} | |
</style> | |
</head> | |
<body> | |
<gradio-lite> | |
<gradio-file name="app.py" entrypoint> | |
import gradio as gr | |
import numpy as np | |
import PIL | |
import trimesh | |
from transformers_js import import_transformers_js, as_url | |
transformers = await import_transformers_js() | |
pipeline = transformers.pipeline | |
depth_estimator = await pipeline('depth-estimation', 'Xenova/depth-anything-small-hf'); | |
def depthmap_to_glb_trimesh(depth_map, rgb_image, file_path): | |
assert depth_map.shape[:2] == rgb_image.shape[:2], "Depth map and RGB image must have the same dimensions" | |
# Generate vertices and faces | |
vertices = [] | |
colors = [] | |
faces = [] | |
height, width = depth_map.shape | |
for y in range(height): | |
for x in range(width): | |
z = depth_map[y, x] | |
vertices.append([x, y, z]) | |
colors.append(rgb_image[y, x]) | |
# Create faces (2 triangles per pixel, except for edges) | |
for y in range(height - 1): | |
for x in range(width - 1): | |
top_left = y * width + x | |
top_right = top_left + 1 | |
bottom_left = top_left + width | |
bottom_right = bottom_left + 1 | |
faces.append([top_left, bottom_left, top_right]) | |
faces.append([top_right, bottom_left, bottom_right]) | |
# Convert to numpy arrays | |
vertices = np.array(vertices, dtype=np.float64) | |
colors = np.array(colors, dtype=np.uint8) | |
faces = np.array(faces, dtype=np.int32) | |
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_colors=colors, process=False) | |
# Export to GLB | |
mesh.export(file_path, file_type='glb') | |
def invert_depth(depth_map): | |
max_depth = np.max(depth_map) | |
return max_depth - depth_map | |
def invert_xy(map): | |
return map[::-1, ::-1] | |
async def estimate(image_path, depth_scale): | |
image = PIL.Image.open(image_path) | |
image.thumbnail((384, 384)) # Resize the image keeping the aspect ratio | |
predictions = await depth_estimator(as_url(image_path)) | |
depth_image = predictions["depth"].to_pil() | |
tensor = predictions["predicted_depth"] | |
tensor_data = { | |
"dims": tensor.dims, | |
"type": tensor.type, | |
"data": tensor.data, | |
"size": tensor.size, | |
} | |
# Construct the 3D model from the depth map and the RGB image | |
depth = predictions["predicted_depth"].to_numpy() | |
depth = invert_depth(depth) | |
depth = invert_xy(depth) | |
depth = depth * depth_scale | |
# The model outputs the depth map in a different size than the input image. | |
# So we resize the depth map to match the original image size. | |
depth = np.array(PIL.Image.fromarray(depth).resize(image.size)) | |
image_array = np.asarray(image) | |
image_array = invert_xy(image_array) | |
glb_file_path = "output.glb" | |
depthmap_to_glb_trimesh(depth, image_array, glb_file_path) | |
return depth_image, glb_file_path, tensor_data | |
demo = gr.Interface( | |
fn=estimate, | |
inputs=[ | |
gr.Image(type="filepath"), | |
gr.Slider(minimum=1, maximum=100, value=10, label="Depth Scale") | |
], | |
outputs=[ | |
gr.Image(label="Depth Image"), | |
gr.Model3D(label="3D Model"), | |
gr.JSON(label="Tensor"), | |
], | |
examples=[ | |
["bread_small.png"], | |
["cats.jpg"], | |
] | |
) | |
demo.launch() | |
</gradio-file> | |
<gradio-file name="bread_small.png" url="https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/bread_small.png" /> | |
<gradio-file name="cats.jpg" url="https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg" /> | |
<gradio-requirements> | |
transformers_js_py | |
trimesh | |
</gradio-requirements> | |
</gradio-lite> | |
</body> | |
</html> |