whitphx's picture
whitphx HF staff
Update app.py
1e7fac9
raw
history blame
14.7 kB
import logging
import logging.handlers
import queue
import urllib.request
from pathlib import Path
from typing import List, NamedTuple
try:
from typing import Literal
except ImportError:
from typing_extensions import Literal # type: ignore
import av
import cv2
import numpy as np
import streamlit as st
from aiortc.contrib.media import MediaPlayer
from streamlit_webrtc import (
ClientSettings,
VideoTransformerBase,
WebRtcMode,
webrtc_streamer,
)
HERE = Path(__file__).parent
logger = logging.getLogger(__name__)
# This code is based on https://github.com/streamlit/demo-self-driving/blob/230245391f2dda0cb464008195a470751c01770b/streamlit_app.py#L48 # noqa: E501
def download_file(url, download_to: Path, expected_size=None):
# Don't download the file twice.
# (If possible, verify the download using the file length.)
if download_to.exists():
if expected_size:
if download_to.stat().st_size == expected_size:
return
else:
st.info(f"{url} is already downloaded.")
if not st.button("Download again?"):
return
download_to.parent.mkdir(parents=True, exist_ok=True)
# These are handles to two visual elements to animate.
weights_warning, progress_bar = None, None
try:
weights_warning = st.warning("Downloading %s..." % url)
progress_bar = st.progress(0)
with open(download_to, "wb") as output_file:
with urllib.request.urlopen(url) as response:
length = int(response.info()["Content-Length"])
counter = 0.0
MEGABYTES = 2.0 ** 20.0
while True:
data = response.read(8192)
if not data:
break
counter += len(data)
output_file.write(data)
# We perform animation by overwriting the elements.
weights_warning.warning(
"Downloading %s... (%6.2f/%6.2f MB)"
% (url, counter / MEGABYTES, length / MEGABYTES)
)
progress_bar.progress(min(counter / length, 1.0))
# Finally, we remove these visual elements by calling .empty().
finally:
if weights_warning is not None:
weights_warning.empty()
if progress_bar is not None:
progress_bar.empty()
WEBRTC_CLIENT_SETTINGS = ClientSettings(
rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]},
media_stream_constraints={"video": True, "audio": True},
)
def main():
st.header("WebRTC demo")
object_detection_page = "Real time object detection (sendrecv)"
video_filters_page = (
"Real time video transform with simple OpenCV filters (sendrecv)"
)
streaming_page = (
"Consuming media files on server-side and streaming it to browser (recvonly)"
)
sendonly_page = "WebRTC is sendonly and images are shown via st.image() (sendonly)"
loopback_page = "Simple video loopback (sendrecv)"
app_mode = st.sidebar.selectbox(
"Choose the app mode",
[
object_detection_page,
video_filters_page,
streaming_page,
sendonly_page,
loopback_page,
],
)
st.subheader(app_mode)
if app_mode == video_filters_page:
app_video_filters()
elif app_mode == object_detection_page:
app_object_detection()
elif app_mode == streaming_page:
app_streaming()
elif app_mode == sendonly_page:
app_sendonly()
elif app_mode == loopback_page:
app_loopback()
def app_loopback():
""" Simple video loopback """
webrtc_streamer(
key="loopback",
mode=WebRtcMode.SENDRECV,
client_settings=WEBRTC_CLIENT_SETTINGS,
video_transformer_factory=None, # NoOp
)
def app_video_filters():
""" Video transforms with OpenCV """
class OpenCVVideoTransformer(VideoTransformerBase):
type: Literal["noop", "cartoon", "edges", "rotate"]
def __init__(self) -> None:
self.type = "noop"
def transform(self, frame: av.VideoFrame) -> av.VideoFrame:
img = frame.to_ndarray(format="bgr24")
if self.type == "noop":
pass
elif self.type == "cartoon":
# prepare color
img_color = cv2.pyrDown(cv2.pyrDown(img))
for _ in range(6):
img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
img_color = cv2.pyrUp(cv2.pyrUp(img_color))
# prepare edges
img_edges = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img_edges = cv2.adaptiveThreshold(
cv2.medianBlur(img_edges, 7),
255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
9,
2,
)
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
# combine color and edges
img = cv2.bitwise_and(img_color, img_edges)
elif self.type == "edges":
# perform edge detection
img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR)
elif self.type == "rotate":
# rotate image
rows, cols, _ = img.shape
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1)
img = cv2.warpAffine(img, M, (cols, rows))
return img
webrtc_ctx = webrtc_streamer(
key="opencv-filter",
mode=WebRtcMode.SENDRECV,
client_settings=WEBRTC_CLIENT_SETTINGS,
video_transformer_factory=OpenCVVideoTransformer,
async_transform=True,
)
transform_type = st.radio(
"Select transform type", ("noop", "cartoon", "edges", "rotate")
)
if webrtc_ctx.video_transformer:
webrtc_ctx.video_transformer.type = transform_type
st.markdown(
"This demo is based on "
"https://github.com/aiortc/aiortc/blob/2362e6d1f0c730a0f8c387bbea76546775ad2fe8/examples/server/server.py#L34. " # noqa: E501
"Many thanks to the project."
)
def app_object_detection():
"""Object detection demo with MobileNet SSD.
This model and code are based on
https://github.com/robmarkcole/object-detection-app
"""
MODEL_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.caffemodel" # noqa: E501
MODEL_LOCAL_PATH = HERE / "./models/MobileNetSSD_deploy.caffemodel"
PROTOTXT_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.prototxt.txt" # noqa: E501
PROTOTXT_LOCAL_PATH = HERE / "./models/MobileNetSSD_deploy.prototxt.txt"
CLASSES = [
"background",
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor",
]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
DEFAULT_CONFIDENCE_THRESHOLD = 0.5
class Detection(NamedTuple):
name: str
prob: float
class MobileNetSSDVideoTransformer(VideoTransformerBase):
confidence_threshold: float
result_queue: "queue.Queue[List[Detection]]"
def __init__(self) -> None:
self._net = cv2.dnn.readNetFromCaffe(
str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH)
)
self.confidence_threshold = DEFAULT_CONFIDENCE_THRESHOLD
self.result_queue = queue.Queue()
def _annotate_image(self, image, detections):
# loop over the detections
(h, w) = image.shape[:2]
result: List[Detection] = []
for i in np.arange(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > self.confidence_threshold:
# extract the index of the class label from the `detections`,
# then compute the (x, y)-coordinates of the bounding box for
# the object
idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
name = CLASSES[idx]
result.append(Detection(name=name, prob=float(confidence)))
# display the prediction
label = f"{name}: {round(confidence * 100, 2)}%"
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(
image,
label,
(startX, y),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
COLORS[idx],
2,
)
return image, result
def transform(self, frame: av.VideoFrame) -> np.ndarray:
image = frame.to_ndarray(format="bgr24")
blob = cv2.dnn.blobFromImage(
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
)
self._net.setInput(blob)
detections = self._net.forward()
annotated_image, result = self._annotate_image(image, detections)
# NOTE: This `transform` method is called in another thread,
# so it must be thread-safe.
self.result_queue.put(result)
return annotated_image
webrtc_ctx = webrtc_streamer(
key="object-detection",
mode=WebRtcMode.SENDRECV,
client_settings=WEBRTC_CLIENT_SETTINGS,
video_transformer_factory=MobileNetSSDVideoTransformer,
async_transform=True,
)
confidence_threshold = st.slider(
"Confidence threshold", 0.0, 1.0, DEFAULT_CONFIDENCE_THRESHOLD, 0.05
)
if webrtc_ctx.video_transformer:
webrtc_ctx.video_transformer.confidence_threshold = confidence_threshold
if st.checkbox("Show the detected labels", value=True):
if webrtc_ctx.state.playing:
labels_placeholder = st.empty()
# NOTE: The video transformation with object detection and
# this loop displaying the result labels are running
# in different threads asynchronously.
# Then the rendered video frames and the labels displayed here
# are not strictly synchronized.
if webrtc_ctx.video_transformer:
while True:
result = webrtc_ctx.video_transformer.result_queue.get()
labels_placeholder.table(result)
st.markdown(
"This demo uses a model and code from "
"https://github.com/robmarkcole/object-detection-app. "
"Many thanks to the project."
)
def app_streaming():
""" Media streamings """
MEDIAFILES = {
"big_buck_bunny_720p_2mb.mp4": {
"url": "https://sample-videos.com/video123/mp4/720/big_buck_bunny_720p_2mb.mp4", # noqa: E501
"local_file_path": HERE / "data/big_buck_bunny_720p_2mb.mp4",
"type": "video",
},
"big_buck_bunny_720p_10mb.mp4": {
"url": "https://sample-videos.com/video123/mp4/720/big_buck_bunny_720p_10mb.mp4", # noqa: E501
"local_file_path": HERE / "data/big_buck_bunny_720p_10mb.mp4",
"type": "video",
},
"file_example_MP3_700KB.mp3": {
"url": "https://file-examples-com.github.io/uploads/2017/11/file_example_MP3_700KB.mp3", # noqa: E501
"local_file_path": HERE / "data/file_example_MP3_700KB.mp3",
"type": "audio",
},
"file_example_MP3_5MG.mp3": {
"url": "https://file-examples-com.github.io/uploads/2017/11/file_example_MP3_5MG.mp3", # noqa: E501
"local_file_path": HERE / "data/file_example_MP3_5MG.mp3",
"type": "audio",
},
}
media_file_label = st.radio(
"Select a media file to stream", tuple(MEDIAFILES.keys())
)
media_file_info = MEDIAFILES[media_file_label]
download_file(media_file_info["url"], media_file_info["local_file_path"])
def create_player():
return MediaPlayer(str(media_file_info["local_file_path"]))
# NOTE: To stream the video from webcam, use the code below.
# return MediaPlayer(
# "1:none",
# format="avfoundation",
# options={"framerate": "30", "video_size": "1280x720"},
# )
WEBRTC_CLIENT_SETTINGS.update(
{
"media_stream_constraints": {
"video": media_file_info["type"] == "video",
"audio": media_file_info["type"] == "audio",
}
}
)
webrtc_streamer(
key=f"media-streaming-{media_file_label}",
mode=WebRtcMode.RECVONLY,
client_settings=WEBRTC_CLIENT_SETTINGS,
player_factory=create_player,
)
def app_sendonly():
"""A sample to use WebRTC in sendonly mode to transfer frames
from the browser to the server and to render frames via `st.image`."""
webrtc_ctx = webrtc_streamer(
key="loopback",
mode=WebRtcMode.SENDONLY,
client_settings=WEBRTC_CLIENT_SETTINGS,
)
if webrtc_ctx.video_receiver:
image_loc = st.empty()
while True:
try:
frame = webrtc_ctx.video_receiver.get_frame(timeout=1)
except queue.Empty:
print("Queue is empty. Stop the loop.")
webrtc_ctx.video_receiver.stop()
break
img_rgb = frame.to_ndarray(format="rgb24")
image_loc.image(img_rgb)
if __name__ == "__main__":
logging.basicConfig(
format="[%(asctime)s] %(levelname)7s from %(name)s in %(filename)s:%(lineno)d: "
"%(message)s",
force=True,
)
logger.setLevel(level=logging.DEBUG)
st_webrtc_logger = logging.getLogger("streamlit_webrtc")
st_webrtc_logger.setLevel(logging.DEBUG)
main()