Last commit not found
import logging | |
import logging.handlers | |
import queue | |
import urllib.request | |
from pathlib import Path | |
try: | |
from typing import Literal | |
except ImportError: | |
from typing_extensions import Literal # type: ignore | |
import av | |
import cv2 | |
import numpy as np | |
import PIL | |
import streamlit as st | |
from aiortc.contrib.media import MediaPlayer | |
from streamlit_webrtc import ( | |
ClientSettings, | |
VideoTransformerBase, | |
WebRtcMode, | |
webrtc_streamer, | |
) | |
HERE = Path(__file__).parent | |
logger = logging.getLogger(__name__) | |
# This code is based on https://github.com/streamlit/demo-self-driving/blob/230245391f2dda0cb464008195a470751c01770b/streamlit_app.py#L48 # noqa: E501 | |
def download_file(url, download_to: Path, expected_size=None): | |
# Don't download the file twice. | |
# (If possible, verify the download using the file length.) | |
if download_to.exists(): | |
if expected_size: | |
if download_to.stat().st_size == expected_size: | |
return | |
else: | |
st.info(f"{url} is already downloaded.") | |
if not st.button("Download again?"): | |
return | |
download_to.parent.mkdir(parents=True, exist_ok=True) | |
# These are handles to two visual elements to animate. | |
weights_warning, progress_bar = None, None | |
try: | |
weights_warning = st.warning("Downloading %s..." % url) | |
progress_bar = st.progress(0) | |
with open(download_to, "wb") as output_file: | |
with urllib.request.urlopen(url) as response: | |
length = int(response.info()["Content-Length"]) | |
counter = 0.0 | |
MEGABYTES = 2.0 ** 20.0 | |
while True: | |
data = response.read(8192) | |
if not data: | |
break | |
counter += len(data) | |
output_file.write(data) | |
# We perform animation by overwriting the elements. | |
weights_warning.warning( | |
"Downloading %s... (%6.2f/%6.2f MB)" | |
% (url, counter / MEGABYTES, length / MEGABYTES) | |
) | |
progress_bar.progress(min(counter / length, 1.0)) | |
# Finally, we remove these visual elements by calling .empty(). | |
finally: | |
if weights_warning is not None: | |
weights_warning.empty() | |
if progress_bar is not None: | |
progress_bar.empty() | |
def main(): | |
st.header("WebRTC demo") | |
object_detection_page = "Real time object detection (sendrecv)" | |
video_filters_page = ( | |
"Real time video transform with simple OpenCV filters (sendrecv)" | |
) | |
streaming_page = ( | |
"Consuming media files on server-side and streaming it to browser (recvonly)" | |
) | |
sendonly_page = "WebRTC is sendonly and images are shown via st.image() (sendonly)" | |
loopback_page = "Simple video loopback (sendrecv)" | |
app_mode = st.sidebar.selectbox( | |
"Choose the app mode", | |
[ | |
object_detection_page, | |
video_filters_page, | |
streaming_page, | |
sendonly_page, | |
loopback_page, | |
], | |
) | |
st.subheader(app_mode) | |
if app_mode == video_filters_page: | |
app_video_filters() | |
elif app_mode == object_detection_page: | |
app_object_detection() | |
elif app_mode == streaming_page: | |
app_streaming() | |
elif app_mode == sendonly_page: | |
app_sendonly() | |
elif app_mode == loopback_page: | |
app_loopback() | |
def app_loopback(): | |
""" Simple video loopback """ | |
webrtc_streamer( | |
key="loopback", | |
mode=WebRtcMode.SENDRECV, | |
client_settings=WEBRTC_CLIENT_SETTINGS, | |
video_transformer_factory=None, # NoOp | |
) | |
def app_video_filters(): | |
""" Video transforms with OpenCV """ | |
class OpenCVVideoTransformer(VideoTransformerBase): | |
type: Literal["noop", "cartoon", "edges", "rotate"] | |
def __init__(self) -> None: | |
self.type = "noop" | |
def transform(self, frame: av.VideoFrame) -> av.VideoFrame: | |
img = frame.to_ndarray(format="bgr24") | |
if self.type == "noop": | |
pass | |
elif self.type == "cartoon": | |
# prepare color | |
img_color = cv2.pyrDown(cv2.pyrDown(img)) | |
for _ in range(6): | |
img_color = cv2.bilateralFilter(img_color, 9, 9, 7) | |
img_color = cv2.pyrUp(cv2.pyrUp(img_color)) | |
# prepare edges | |
img_edges = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | |
img_edges = cv2.adaptiveThreshold( | |
cv2.medianBlur(img_edges, 7), | |
255, | |
cv2.ADAPTIVE_THRESH_MEAN_C, | |
cv2.THRESH_BINARY, | |
9, | |
2, | |
) | |
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB) | |
# combine color and edges | |
img = cv2.bitwise_and(img_color, img_edges) | |
elif self.type == "edges": | |
# perform edge detection | |
img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR) | |
elif self.type == "rotate": | |
# rotate image | |
rows, cols, _ = img.shape | |
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1) | |
img = cv2.warpAffine(img, M, (cols, rows)) | |
return img | |
webrtc_ctx = webrtc_streamer( | |
key="opencv-filter", | |
mode=WebRtcMode.SENDRECV, | |
client_settings=WEBRTC_CLIENT_SETTINGS, | |
video_transformer_factory=OpenCVVideoTransformer, | |
async_transform=True, | |
) | |
transform_type = st.radio( | |
"Select transform type", ("noop", "cartoon", "edges", "rotate") | |
) | |
if webrtc_ctx.video_transformer: | |
webrtc_ctx.video_transformer.type = transform_type | |
st.markdown( | |
"This demo is based on " | |
"https://github.com/aiortc/aiortc/blob/2362e6d1f0c730a0f8c387bbea76546775ad2fe8/examples/server/server.py#L34. " # noqa: E501 | |
"Many thanks to the project." | |
) | |
def app_object_detection(): | |
"""Object detection demo with MobileNet SSD. | |
This model and code are based on | |
https://github.com/robmarkcole/object-detection-app | |
""" | |
MODEL_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.caffemodel" # noqa: E501 | |
MODEL_LOCAL_PATH = HERE / "./models/MobileNetSSD_deploy.caffemodel" | |
PROTOTXT_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.prototxt.txt" # noqa: E501 | |
PROTOTXT_LOCAL_PATH = HERE / "./models/MobileNetSSD_deploy.prototxt.txt" | |
CLASSES = [ | |
"background", | |
"aeroplane", | |
"bicycle", | |
"bird", | |
"boat", | |
"bottle", | |
"bus", | |
"car", | |
"cat", | |
"chair", | |
"cow", | |
"diningtable", | |
"dog", | |
"horse", | |
"motorbike", | |
"person", | |
"pottedplant", | |
"sheep", | |
"sofa", | |
"train", | |
"tvmonitor", | |
] | |
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) | |
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564) | |
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353) | |
DEFAULT_CONFIDENCE_THRESHOLD = 0.5 | |
class NNVideoTransformer(VideoTransformerBase): | |
confidence_threshold: float | |
def __init__(self) -> None: | |
self._net = cv2.dnn.readNetFromCaffe( | |
str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH) | |
) | |
self.confidence_threshold = DEFAULT_CONFIDENCE_THRESHOLD | |
def _annotate_image(self, image, detections): | |
# loop over the detections | |
(h, w) = image.shape[:2] | |
labels = [] | |
for i in np.arange(0, detections.shape[2]): | |
confidence = detections[0, 0, i, 2] | |
if confidence > self.confidence_threshold: | |
# extract the index of the class label from the `detections`, | |
# then compute the (x, y)-coordinates of the bounding box for | |
# the object | |
idx = int(detections[0, 0, i, 1]) | |
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) | |
(startX, startY, endX, endY) = box.astype("int") | |
# display the prediction | |
label = f"{CLASSES[idx]}: {round(confidence * 100, 2)}%" | |
labels.append(label) | |
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2) | |
y = startY - 15 if startY - 15 > 15 else startY + 15 | |
cv2.putText( | |
image, | |
label, | |
(startX, y), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.5, | |
COLORS[idx], | |
2, | |
) | |
return image, labels | |
def transform(self, frame: av.VideoFrame) -> np.ndarray: | |
image = frame.to_ndarray(format="bgr24") | |
blob = cv2.dnn.blobFromImage( | |
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5 | |
) | |
self._net.setInput(blob) | |
detections = self._net.forward() | |
annotated_image, labels = self._annotate_image(image, detections) | |
# TODO: Show labels | |
return annotated_image | |
webrtc_ctx = webrtc_streamer( | |
key="object-detection", | |
mode=WebRtcMode.SENDRECV, | |
client_settings=WEBRTC_CLIENT_SETTINGS, | |
video_transformer_factory=NNVideoTransformer, | |
async_transform=True, | |
) | |
confidence_threshold = st.slider( | |
"Confidence threshold", 0.0, 1.0, DEFAULT_CONFIDENCE_THRESHOLD, 0.05 | |
) | |
if webrtc_ctx.video_transformer: | |
webrtc_ctx.video_transformer.confidence_threshold = confidence_threshold | |
st.markdown( | |
"This demo uses a model and code from " | |
"https://github.com/robmarkcole/object-detection-app. " | |
"Many thanks to the project." | |
) | |
def app_streaming(): | |
""" Media streamings """ | |
MEDIAFILES = { | |
"big_buck_bunny_720p_2mb.mp4": { | |
"url": "https://sample-videos.com/video123/mp4/720/big_buck_bunny_720p_2mb.mp4", # noqa: E501 | |
"local_file_path": HERE / "data/big_buck_bunny_720p_2mb.mp4", | |
"type": "video", | |
}, | |
"big_buck_bunny_720p_10mb.mp4": { | |
"url": "https://sample-videos.com/video123/mp4/720/big_buck_bunny_720p_10mb.mp4", # noqa: E501 | |
"local_file_path": HERE / "data/big_buck_bunny_720p_10mb.mp4", | |
"type": "video", | |
}, | |
"file_example_MP3_700KB.mp3": { | |
"url": "https://file-examples-com.github.io/uploads/2017/11/file_example_MP3_700KB.mp3", # noqa: E501 | |
"local_file_path": HERE / "data/file_example_MP3_700KB.mp3", | |
"type": "audio", | |
}, | |
"file_example_MP3_5MG.mp3": { | |
"url": "https://file-examples-com.github.io/uploads/2017/11/file_example_MP3_5MG.mp3", # noqa: E501 | |
"local_file_path": HERE / "data/file_example_MP3_5MG.mp3", | |
"type": "audio", | |
}, | |
} | |
media_file_label = st.radio( | |
"Select a media file to stream", tuple(MEDIAFILES.keys()) | |
) | |
media_file_info = MEDIAFILES[media_file_label] | |
download_file(media_file_info["url"], media_file_info["local_file_path"]) | |
def create_player(): | |
return MediaPlayer(str(media_file_info["local_file_path"])) | |
# NOTE: To stream the video from webcam, use the code below. | |
# return MediaPlayer( | |
# "1:none", | |
# format="avfoundation", | |
# options={"framerate": "30", "video_size": "1280x720"}, | |
# ) | |
WEBRTC_CLIENT_SETTINGS.update( | |
{ | |
"fmedia_stream_constraints": { | |
"video": media_file_info["type"] == "video", | |
"audio": media_file_info["type"] == "audio", | |
} | |
} | |
) | |
webrtc_streamer( | |
key=f"media-streaming-{media_file_label}", | |
mode=WebRtcMode.RECVONLY, | |
client_settings=WEBRTC_CLIENT_SETTINGS, | |
player_factory=create_player, | |
) | |
def app_sendonly(): | |
"""A sample to use WebRTC in sendonly mode to transfer frames | |
from the browser to the server and to render frames via `st.image`.""" | |
webrtc_ctx = webrtc_streamer( | |
key="loopback", | |
mode=WebRtcMode.SENDONLY, | |
client_settings=WEBRTC_CLIENT_SETTINGS, | |
) | |
if webrtc_ctx.video_receiver: | |
image_loc = st.empty() | |
while True: | |
try: | |
frame = webrtc_ctx.video_receiver.frames_queue.get(timeout=1) | |
except queue.Empty: | |
print("Queue is empty. Stop the loop.") | |
webrtc_ctx.video_receiver.stop() | |
break | |
img = frame.to_ndarray(format="bgr24") | |
img = PIL.Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
image_loc.image(img) | |
WEBRTC_CLIENT_SETTINGS = ClientSettings( | |
rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}, | |
media_stream_constraints={"video": True, "audio": True}, | |
) | |
if __name__ == "__main__": | |
logging.basicConfig( | |
format="[%(asctime)s] %(levelname)7s from %(name)s in %(filename)s:%(lineno)d: " | |
"%(message)s", | |
force=True, | |
) | |
logger.setLevel(level=logging.DEBUG) | |
st_webrtc_logger = logging.getLogger("streamlit_webrtc") | |
st_webrtc_logger.setLevel(logging.DEBUG) | |
main() | |