Update app.py
Browse files
app.py
CHANGED
@@ -1,676 +1,172 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
2 |
import logging
|
3 |
import queue
|
4 |
-
import threading
|
5 |
-
import urllib.request
|
6 |
from pathlib import Path
|
7 |
-
from typing import List, NamedTuple
|
8 |
|
9 |
import av
|
10 |
import cv2
|
11 |
-
import matplotlib.pyplot as plt
|
12 |
import numpy as np
|
13 |
-
import pydub
|
14 |
import streamlit as st
|
15 |
-
from
|
16 |
|
17 |
-
from
|
18 |
-
RTCConfiguration,
|
19 |
-
WebRtcMode,
|
20 |
-
WebRtcStreamerContext,
|
21 |
-
webrtc_streamer,
|
22 |
-
)
|
23 |
|
24 |
HERE = Path(__file__).parent
|
|
|
25 |
|
26 |
logger = logging.getLogger(__name__)
|
27 |
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
if download_to.exists():
|
34 |
-
if expected_size:
|
35 |
-
if download_to.stat().st_size == expected_size:
|
36 |
-
return
|
37 |
-
else:
|
38 |
-
st.info(f"{url} is already downloaded.")
|
39 |
-
if not st.button("Download again?"):
|
40 |
-
return
|
41 |
-
|
42 |
-
download_to.parent.mkdir(parents=True, exist_ok=True)
|
43 |
-
|
44 |
-
# These are handles to two visual elements to animate.
|
45 |
-
weights_warning, progress_bar = None, None
|
46 |
-
try:
|
47 |
-
weights_warning = st.warning("Downloading %s..." % url)
|
48 |
-
progress_bar = st.progress(0)
|
49 |
-
with open(download_to, "wb") as output_file:
|
50 |
-
with urllib.request.urlopen(url) as response:
|
51 |
-
length = int(response.info()["Content-Length"])
|
52 |
-
counter = 0.0
|
53 |
-
MEGABYTES = 2.0 ** 20.0
|
54 |
-
while True:
|
55 |
-
data = response.read(8192)
|
56 |
-
if not data:
|
57 |
-
break
|
58 |
-
counter += len(data)
|
59 |
-
output_file.write(data)
|
60 |
-
|
61 |
-
# We perform animation by overwriting the elements.
|
62 |
-
weights_warning.warning(
|
63 |
-
"Downloading %s... (%6.2f/%6.2f MB)"
|
64 |
-
% (url, counter / MEGABYTES, length / MEGABYTES)
|
65 |
-
)
|
66 |
-
progress_bar.progress(min(counter / length, 1.0))
|
67 |
-
# Finally, we remove these visual elements by calling .empty().
|
68 |
-
finally:
|
69 |
-
if weights_warning is not None:
|
70 |
-
weights_warning.empty()
|
71 |
-
if progress_bar is not None:
|
72 |
-
progress_bar.empty()
|
73 |
-
|
74 |
-
|
75 |
-
RTC_CONFIGURATION = RTCConfiguration(
|
76 |
-
{"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
|
77 |
-
)
|
78 |
-
|
79 |
-
|
80 |
-
def main():
|
81 |
-
st.header("WebRTC demo")
|
82 |
-
|
83 |
-
pages = {
|
84 |
-
"Real time object detection (sendrecv)": app_object_detection,
|
85 |
-
"Real time video transform with simple OpenCV filters (sendrecv)": app_video_filters, # noqa: E501
|
86 |
-
"Real time audio filter (sendrecv)": app_audio_filter,
|
87 |
-
"Delayed echo (sendrecv)": app_delayed_echo,
|
88 |
-
"Consuming media files on server-side and streaming it to browser (recvonly)": app_streaming, # noqa: E501
|
89 |
-
"WebRTC is sendonly and images are shown via st.image() (sendonly)": app_sendonly_video, # noqa: E501
|
90 |
-
"WebRTC is sendonly and audio frames are visualized with matplotlib (sendonly)": app_sendonly_audio, # noqa: E501
|
91 |
-
"Simple video and audio loopback (sendrecv)": app_loopback,
|
92 |
-
"Configure media constraints and HTML element styles with loopback (sendrecv)": app_media_constraints, # noqa: E501
|
93 |
-
"Control the playing state programatically": app_programatically_play,
|
94 |
-
"Customize UI texts": app_customize_ui_texts,
|
95 |
-
}
|
96 |
-
page_titles = pages.keys()
|
97 |
-
|
98 |
-
page_title = st.sidebar.selectbox(
|
99 |
-
"Choose the app mode",
|
100 |
-
page_titles,
|
101 |
-
)
|
102 |
-
st.subheader(page_title)
|
103 |
-
|
104 |
-
page_func = pages[page_title]
|
105 |
-
page_func()
|
106 |
-
|
107 |
-
st.sidebar.markdown(
|
108 |
-
"""
|
109 |
-
---
|
110 |
-
<a href="https://www.buymeacoffee.com/whitphx" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" width="180" height="50" ></a>
|
111 |
-
""", # noqa: E501
|
112 |
-
unsafe_allow_html=True,
|
113 |
-
)
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
|
125 |
|
126 |
-
|
127 |
-
"""Video transforms with OpenCV"""
|
128 |
|
129 |
-
|
|
|
130 |
|
131 |
-
|
132 |
-
img = frame.to_ndarray(format="bgr24")
|
133 |
|
134 |
-
if _type == "noop":
|
135 |
-
pass
|
136 |
-
elif _type == "cartoon":
|
137 |
-
# prepare color
|
138 |
-
img_color = cv2.pyrDown(cv2.pyrDown(img))
|
139 |
-
for _ in range(6):
|
140 |
-
img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
|
141 |
-
img_color = cv2.pyrUp(cv2.pyrUp(img_color))
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
cv2.medianBlur(img_edges, 7),
|
147 |
-
255,
|
148 |
-
cv2.ADAPTIVE_THRESH_MEAN_C,
|
149 |
-
cv2.THRESH_BINARY,
|
150 |
-
9,
|
151 |
-
2,
|
152 |
-
)
|
153 |
-
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
|
154 |
-
|
155 |
-
# combine color and edges
|
156 |
-
img = cv2.bitwise_and(img_color, img_edges)
|
157 |
-
elif _type == "edges":
|
158 |
-
# perform edge detection
|
159 |
-
img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR)
|
160 |
-
elif _type == "rotate":
|
161 |
-
# rotate image
|
162 |
-
rows, cols, _ = img.shape
|
163 |
-
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1)
|
164 |
-
img = cv2.warpAffine(img, M, (cols, rows))
|
165 |
-
|
166 |
-
return av.VideoFrame.from_ndarray(img, format="bgr24")
|
167 |
-
|
168 |
-
webrtc_streamer(
|
169 |
-
key="opencv-filter",
|
170 |
-
mode=WebRtcMode.SENDRECV,
|
171 |
-
rtc_configuration=RTC_CONFIGURATION,
|
172 |
-
video_frame_callback=callback,
|
173 |
-
media_stream_constraints={"video": True, "audio": False},
|
174 |
-
async_processing=True,
|
175 |
-
)
|
176 |
|
177 |
-
st.markdown(
|
178 |
-
"This demo is based on "
|
179 |
-
"https://github.com/aiortc/aiortc/blob/2362e6d1f0c730a0f8c387bbea76546775ad2fe8/examples/server/server.py#L34. " # noqa: E501
|
180 |
-
"Many thanks to the project."
|
181 |
-
)
|
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
|
185 |
-
gain = st.slider("Gain", -10.0, +20.0, 1.0, 0.05)
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
data=raw_samples.tobytes(),
|
191 |
-
sample_width=frame.format.bytes,
|
192 |
-
frame_rate=frame.sample_rate,
|
193 |
-
channels=len(frame.layout.channels),
|
194 |
-
)
|
195 |
|
196 |
-
sound = sound.apply_gain(gain)
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
-
new_frame = av.AudioFrame.from_ndarray(new_samples, layout=frame.layout.name)
|
205 |
-
new_frame.sample_rate = frame.sample_rate
|
206 |
-
return new_frame
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
rtc_configuration=RTC_CONFIGURATION,
|
212 |
-
audio_frame_callback=process_audio,
|
213 |
-
async_processing=True,
|
214 |
-
)
|
215 |
|
216 |
|
217 |
-
def
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
frames: List[av.VideoFrame],
|
222 |
-
) -> List[av.VideoFrame]:
|
223 |
-
logger.debug("Delay: %f", delay)
|
224 |
-
# A standalone `await ...` is interpreted as an expression and
|
225 |
-
# the Streamlit magic's target, which leads implicit calls of `st.write`.
|
226 |
-
# To prevent it, fix it as `_ = await ...`, a statement.
|
227 |
-
# See https://discuss.streamlit.io/t/issue-with-asyncio-run-in-streamlit/7745/15
|
228 |
-
_ = await asyncio.sleep(delay)
|
229 |
-
return frames
|
230 |
-
|
231 |
-
async def queued_audio_frames_callback(
|
232 |
-
frames: List[av.AudioFrame],
|
233 |
-
) -> List[av.AudioFrame]:
|
234 |
-
_ = await asyncio.sleep(delay)
|
235 |
-
return frames
|
236 |
-
|
237 |
-
webrtc_streamer(
|
238 |
-
key="delay",
|
239 |
-
mode=WebRtcMode.SENDRECV,
|
240 |
-
rtc_configuration=RTC_CONFIGURATION,
|
241 |
-
queued_video_frames_callback=queued_video_frames_callback,
|
242 |
-
queued_audio_frames_callback=queued_audio_frames_callback,
|
243 |
-
async_processing=True,
|
244 |
)
|
|
|
|
|
|
|
245 |
|
|
|
|
|
|
|
246 |
|
247 |
-
|
248 |
-
"""Object detection demo with MobileNet SSD.
|
249 |
-
This model and code are based on
|
250 |
-
https://github.com/robmarkcole/object-detection-app
|
251 |
-
"""
|
252 |
-
MODEL_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.caffemodel" # noqa: E501
|
253 |
-
MODEL_LOCAL_PATH = HERE / "./models/MobileNetSSD_deploy.caffemodel"
|
254 |
-
PROTOTXT_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.prototxt.txt" # noqa: E501
|
255 |
-
PROTOTXT_LOCAL_PATH = HERE / "./models/MobileNetSSD_deploy.prototxt.txt"
|
256 |
-
|
257 |
-
CLASSES = [
|
258 |
-
"background",
|
259 |
-
"aeroplane",
|
260 |
-
"bicycle",
|
261 |
-
"bird",
|
262 |
-
"boat",
|
263 |
-
"bottle",
|
264 |
-
"bus",
|
265 |
-
"car",
|
266 |
-
"cat",
|
267 |
-
"chair",
|
268 |
-
"cow",
|
269 |
-
"diningtable",
|
270 |
-
"dog",
|
271 |
-
"horse",
|
272 |
-
"motorbike",
|
273 |
-
"person",
|
274 |
-
"pottedplant",
|
275 |
-
"sheep",
|
276 |
-
"sofa",
|
277 |
-
"train",
|
278 |
-
"tvmonitor",
|
279 |
-
]
|
280 |
-
|
281 |
-
@st.experimental_singleton
|
282 |
-
def generate_label_colors():
|
283 |
-
return np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
284 |
-
|
285 |
-
COLORS = generate_label_colors()
|
286 |
-
|
287 |
-
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
|
288 |
-
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
|
289 |
-
|
290 |
-
DEFAULT_CONFIDENCE_THRESHOLD = 0.5
|
291 |
-
|
292 |
-
class Detection(NamedTuple):
|
293 |
-
name: str
|
294 |
-
prob: float
|
295 |
-
|
296 |
-
# Session-specific caching
|
297 |
-
cache_key = "object_detection_dnn"
|
298 |
-
if cache_key in st.session_state:
|
299 |
-
net = st.session_state[cache_key]
|
300 |
-
else:
|
301 |
-
net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH))
|
302 |
-
st.session_state[cache_key] = net
|
303 |
-
|
304 |
-
confidence_threshold = st.slider(
|
305 |
-
"Confidence threshold", 0.0, 1.0, DEFAULT_CONFIDENCE_THRESHOLD, 0.05
|
306 |
-
)
|
307 |
|
308 |
-
def _annotate_image(image, detections):
|
309 |
-
# loop over the detections
|
310 |
-
(h, w) = image.shape[:2]
|
311 |
-
result: List[Detection] = []
|
312 |
-
for i in np.arange(0, detections.shape[2]):
|
313 |
-
confidence = detections[0, 0, i, 2]
|
314 |
-
|
315 |
-
if confidence > confidence_threshold:
|
316 |
-
# extract the index of the class label from the `detections`,
|
317 |
-
# then compute the (x, y)-coordinates of the bounding box for
|
318 |
-
# the object
|
319 |
-
idx = int(detections[0, 0, i, 1])
|
320 |
-
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
321 |
-
(startX, startY, endX, endY) = box.astype("int")
|
322 |
-
|
323 |
-
name = CLASSES[idx]
|
324 |
-
result.append(Detection(name=name, prob=float(confidence)))
|
325 |
-
|
326 |
-
# display the prediction
|
327 |
-
label = f"{name}: {round(confidence * 100, 2)}%"
|
328 |
-
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2)
|
329 |
-
y = startY - 15 if startY - 15 > 15 else startY + 15
|
330 |
-
cv2.putText(
|
331 |
-
image,
|
332 |
-
label,
|
333 |
-
(startX, y),
|
334 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
335 |
-
0.5,
|
336 |
-
COLORS[idx],
|
337 |
-
2,
|
338 |
-
)
|
339 |
-
return image, result
|
340 |
-
|
341 |
-
result_queue = (
|
342 |
-
queue.Queue()
|
343 |
-
) # TODO: A general-purpose shared state object may be more useful.
|
344 |
-
|
345 |
-
def callback(frame: av.VideoFrame) -> av.VideoFrame:
|
346 |
-
image = frame.to_ndarray(format="bgr24")
|
347 |
-
blob = cv2.dnn.blobFromImage(
|
348 |
-
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
|
349 |
-
)
|
350 |
-
net.setInput(blob)
|
351 |
-
detections = net.forward()
|
352 |
-
annotated_image, result = _annotate_image(image, detections)
|
353 |
-
|
354 |
-
# NOTE: This `recv` method is called in another thread,
|
355 |
-
# so it must be thread-safe.
|
356 |
-
result_queue.put(result) # TODO:
|
357 |
-
|
358 |
-
return av.VideoFrame.from_ndarray(annotated_image, format="bgr24")
|
359 |
|
|
|
360 |
webrtc_ctx = webrtc_streamer(
|
361 |
key="object-detection",
|
362 |
mode=WebRtcMode.SENDRECV,
|
363 |
-
rtc_configuration=
|
364 |
video_frame_callback=callback,
|
365 |
media_stream_constraints={"video": True, "audio": False},
|
366 |
async_processing=True,
|
367 |
)
|
368 |
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
try:
|
379 |
-
result = result_queue.get(timeout=1.0)
|
380 |
-
except queue.Empty:
|
381 |
-
result = None
|
382 |
-
labels_placeholder.table(result)
|
383 |
-
|
384 |
-
st.markdown(
|
385 |
-
"This demo uses a model and code from "
|
386 |
-
"https://github.com/robmarkcole/object-detection-app. "
|
387 |
-
"Many thanks to the project."
|
388 |
-
)
|
389 |
-
|
390 |
-
|
391 |
-
def app_streaming():
|
392 |
-
"""Media streamings"""
|
393 |
-
MEDIAFILES = {
|
394 |
-
"big_buck_bunny_720p_2mb.mp4 (local)": {
|
395 |
-
"url": "https://sample-videos.com/video123/mp4/720/big_buck_bunny_720p_2mb.mp4", # noqa: E501
|
396 |
-
"local_file_path": HERE / "data/big_buck_bunny_720p_2mb.mp4",
|
397 |
-
"type": "video",
|
398 |
-
},
|
399 |
-
"big_buck_bunny_720p_10mb.mp4 (local)": {
|
400 |
-
"url": "https://sample-videos.com/video123/mp4/720/big_buck_bunny_720p_10mb.mp4", # noqa: E501
|
401 |
-
"local_file_path": HERE / "data/big_buck_bunny_720p_10mb.mp4",
|
402 |
-
"type": "video",
|
403 |
-
},
|
404 |
-
"file_example_MP3_700KB.mp3 (local)": {
|
405 |
-
"url": "https://file-examples-com.github.io/uploads/2017/11/file_example_MP3_700KB.mp3", # noqa: E501
|
406 |
-
"local_file_path": HERE / "data/file_example_MP3_700KB.mp3",
|
407 |
-
"type": "audio",
|
408 |
-
},
|
409 |
-
"file_example_MP3_5MG.mp3 (local)": {
|
410 |
-
"url": "https://file-examples-com.github.io/uploads/2017/11/file_example_MP3_5MG.mp3", # noqa: E501
|
411 |
-
"local_file_path": HERE / "data/file_example_MP3_5MG.mp3",
|
412 |
-
"type": "audio",
|
413 |
-
},
|
414 |
-
"rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mov": {
|
415 |
-
"url": "rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mov",
|
416 |
-
"type": "video",
|
417 |
-
},
|
418 |
-
}
|
419 |
-
media_file_label = st.radio(
|
420 |
-
"Select a media source to stream", tuple(MEDIAFILES.keys())
|
421 |
-
)
|
422 |
-
media_file_info = MEDIAFILES[media_file_label]
|
423 |
-
if "local_file_path" in media_file_info:
|
424 |
-
download_file(media_file_info["url"], media_file_info["local_file_path"])
|
425 |
-
|
426 |
-
def create_player():
|
427 |
-
if "local_file_path" in media_file_info:
|
428 |
-
return MediaPlayer(str(media_file_info["local_file_path"]))
|
429 |
-
else:
|
430 |
-
return MediaPlayer(media_file_info["url"])
|
431 |
-
|
432 |
-
# NOTE: To stream the video from webcam, use the code below.
|
433 |
-
# return MediaPlayer(
|
434 |
-
# "1:none",
|
435 |
-
# format="avfoundation",
|
436 |
-
# options={"framerate": "30", "video_size": "1280x720"},
|
437 |
-
# )
|
438 |
-
|
439 |
-
key = f"media-streaming-{media_file_label}"
|
440 |
-
ctx: Optional[WebRtcStreamerContext] = st.session_state.get(key)
|
441 |
-
if media_file_info["type"] == "video" and ctx and ctx.state.playing:
|
442 |
-
_type = st.radio(
|
443 |
-
"Select transform type", ("noop", "cartoon", "edges", "rotate")
|
444 |
-
)
|
445 |
-
else:
|
446 |
-
_type = "noop"
|
447 |
-
|
448 |
-
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
449 |
-
img = frame.to_ndarray(format="bgr24")
|
450 |
-
|
451 |
-
if _type == "noop":
|
452 |
-
pass
|
453 |
-
elif _type == "cartoon":
|
454 |
-
# prepare color
|
455 |
-
img_color = cv2.pyrDown(cv2.pyrDown(img))
|
456 |
-
for _ in range(6):
|
457 |
-
img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
|
458 |
-
img_color = cv2.pyrUp(cv2.pyrUp(img_color))
|
459 |
-
|
460 |
-
# prepare edges
|
461 |
-
img_edges = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
462 |
-
img_edges = cv2.adaptiveThreshold(
|
463 |
-
cv2.medianBlur(img_edges, 7),
|
464 |
-
255,
|
465 |
-
cv2.ADAPTIVE_THRESH_MEAN_C,
|
466 |
-
cv2.THRESH_BINARY,
|
467 |
-
9,
|
468 |
-
2,
|
469 |
-
)
|
470 |
-
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
|
471 |
-
|
472 |
-
# combine color and edges
|
473 |
-
img = cv2.bitwise_and(img_color, img_edges)
|
474 |
-
elif _type == "edges":
|
475 |
-
# perform edge detection
|
476 |
-
img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR)
|
477 |
-
elif _type == "rotate":
|
478 |
-
# rotate image
|
479 |
-
rows, cols, _ = img.shape
|
480 |
-
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1)
|
481 |
-
img = cv2.warpAffine(img, M, (cols, rows))
|
482 |
-
|
483 |
-
return av.VideoFrame.from_ndarray(img, format="bgr24")
|
484 |
-
|
485 |
-
webrtc_streamer(
|
486 |
-
key=key,
|
487 |
-
mode=WebRtcMode.RECVONLY,
|
488 |
-
rtc_configuration=RTC_CONFIGURATION,
|
489 |
-
media_stream_constraints={
|
490 |
-
"video": media_file_info["type"] == "video",
|
491 |
-
"audio": media_file_info["type"] == "audio",
|
492 |
-
},
|
493 |
-
player_factory=create_player,
|
494 |
-
video_frame_callback=video_frame_callback,
|
495 |
-
)
|
496 |
-
|
497 |
-
st.markdown(
|
498 |
-
"The video filter in this demo is based on "
|
499 |
-
"https://github.com/aiortc/aiortc/blob/2362e6d1f0c730a0f8c387bbea76546775ad2fe8/examples/server/server.py#L34. " # noqa: E501
|
500 |
-
"Many thanks to the project."
|
501 |
-
)
|
502 |
-
|
503 |
-
|
504 |
-
def app_sendonly_video():
|
505 |
-
"""A sample to use WebRTC in sendonly mode to transfer frames
|
506 |
-
from the browser to the server and to render frames via `st.image`."""
|
507 |
-
webrtc_ctx = webrtc_streamer(
|
508 |
-
key="video-sendonly",
|
509 |
-
mode=WebRtcMode.SENDONLY,
|
510 |
-
rtc_configuration=RTC_CONFIGURATION,
|
511 |
-
media_stream_constraints={"video": True},
|
512 |
-
)
|
513 |
-
|
514 |
-
image_place = st.empty()
|
515 |
-
|
516 |
-
while True:
|
517 |
-
if webrtc_ctx.video_receiver:
|
518 |
-
try:
|
519 |
-
video_frame = webrtc_ctx.video_receiver.get_frame(timeout=1)
|
520 |
-
except queue.Empty:
|
521 |
-
logger.warning("Queue is empty. Abort.")
|
522 |
-
break
|
523 |
-
|
524 |
-
img_rgb = video_frame.to_ndarray(format="rgb24")
|
525 |
-
image_place.image(img_rgb)
|
526 |
-
else:
|
527 |
-
logger.warning("AudioReciver is not set. Abort.")
|
528 |
-
break
|
529 |
-
|
530 |
-
|
531 |
-
def app_sendonly_audio():
|
532 |
-
"""A sample to use WebRTC in sendonly mode to transfer audio frames
|
533 |
-
from the browser to the server and visualize them with matplotlib
|
534 |
-
and `st.pyplot`."""
|
535 |
-
webrtc_ctx = webrtc_streamer(
|
536 |
-
key="sendonly-audio",
|
537 |
-
mode=WebRtcMode.SENDONLY,
|
538 |
-
audio_receiver_size=256,
|
539 |
-
rtc_configuration=RTC_CONFIGURATION,
|
540 |
-
media_stream_constraints={"audio": True},
|
541 |
-
)
|
542 |
-
|
543 |
-
fig_place = st.empty()
|
544 |
-
|
545 |
-
fig, [ax_time, ax_freq] = plt.subplots(
|
546 |
-
2, 1, gridspec_kw={"top": 1.5, "bottom": 0.2}
|
547 |
-
)
|
548 |
-
|
549 |
-
sound_window_len = 5000 # 5s
|
550 |
-
sound_window_buffer = None
|
551 |
-
while True:
|
552 |
-
if webrtc_ctx.audio_receiver:
|
553 |
try:
|
554 |
-
|
555 |
except queue.Empty:
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
sound_chunk = pydub.AudioSegment.empty()
|
560 |
-
for audio_frame in audio_frames:
|
561 |
-
sound = pydub.AudioSegment(
|
562 |
-
data=audio_frame.to_ndarray().tobytes(),
|
563 |
-
sample_width=audio_frame.format.bytes,
|
564 |
-
frame_rate=audio_frame.sample_rate,
|
565 |
-
channels=len(audio_frame.layout.channels),
|
566 |
-
)
|
567 |
-
sound_chunk += sound
|
568 |
-
|
569 |
-
if len(sound_chunk) > 0:
|
570 |
-
if sound_window_buffer is None:
|
571 |
-
sound_window_buffer = pydub.AudioSegment.silent(
|
572 |
-
duration=sound_window_len
|
573 |
-
)
|
574 |
-
|
575 |
-
sound_window_buffer += sound_chunk
|
576 |
-
if len(sound_window_buffer) > sound_window_len:
|
577 |
-
sound_window_buffer = sound_window_buffer[-sound_window_len:]
|
578 |
-
|
579 |
-
if sound_window_buffer:
|
580 |
-
# Ref: https://own-search-and-study.xyz/2017/10/27/python%E3%82%92%E4%BD%BF%E3%81%A3%E3%81%A6%E9%9F%B3%E5%A3%B0%E3%83%87%E3%83%BC%E3%82%BF%E3%81%8B%E3%82%89%E3%82%B9%E3%83%9A%E3%82%AF%E3%83%88%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%A0%E3%82%92%E4%BD%9C/ # noqa
|
581 |
-
sound_window_buffer = sound_window_buffer.set_channels(
|
582 |
-
1
|
583 |
-
) # Stereo to mono
|
584 |
-
sample = np.array(sound_window_buffer.get_array_of_samples())
|
585 |
-
|
586 |
-
ax_time.cla()
|
587 |
-
times = (np.arange(-len(sample), 0)) / sound_window_buffer.frame_rate
|
588 |
-
ax_time.plot(times, sample)
|
589 |
-
ax_time.set_xlabel("Time")
|
590 |
-
ax_time.set_ylabel("Magnitude")
|
591 |
-
|
592 |
-
spec = np.fft.fft(sample)
|
593 |
-
freq = np.fft.fftfreq(sample.shape[0], 1.0 / sound_chunk.frame_rate)
|
594 |
-
freq = freq[: int(freq.shape[0] / 2)]
|
595 |
-
spec = spec[: int(spec.shape[0] / 2)]
|
596 |
-
spec[0] = spec[0] / 2
|
597 |
-
|
598 |
-
ax_freq.cla()
|
599 |
-
ax_freq.plot(freq, np.abs(spec))
|
600 |
-
ax_freq.set_xlabel("Frequency")
|
601 |
-
ax_freq.set_yscale("log")
|
602 |
-
ax_freq.set_ylabel("Magnitude")
|
603 |
-
|
604 |
-
fig_place.pyplot(fig)
|
605 |
-
else:
|
606 |
-
logger.warning("AudioReciver is not set. Abort.")
|
607 |
-
break
|
608 |
-
|
609 |
-
|
610 |
-
def app_media_constraints():
|
611 |
-
"""A sample to configure MediaStreamConstraints object"""
|
612 |
-
frame_rate = 5
|
613 |
-
webrtc_streamer(
|
614 |
-
key="media-constraints",
|
615 |
-
mode=WebRtcMode.SENDRECV,
|
616 |
-
rtc_configuration=RTC_CONFIGURATION,
|
617 |
-
media_stream_constraints={
|
618 |
-
"video": {"frameRate": {"ideal": frame_rate}},
|
619 |
-
},
|
620 |
-
video_html_attrs={
|
621 |
-
"style": {"width": "50%", "margin": "0 auto", "border": "5px yellow solid"},
|
622 |
-
"controls": False,
|
623 |
-
"autoPlay": True,
|
624 |
-
},
|
625 |
-
)
|
626 |
-
st.write(f"The frame rate is set as {frame_rate}. Video style is changed.")
|
627 |
|
628 |
-
|
629 |
-
|
630 |
-
"
|
631 |
-
|
632 |
-
|
633 |
-
webrtc_streamer(
|
634 |
-
key="programatic_control",
|
635 |
-
desired_playing_state=playing,
|
636 |
-
mode=WebRtcMode.SENDRECV,
|
637 |
-
rtc_configuration=RTC_CONFIGURATION,
|
638 |
-
)
|
639 |
-
|
640 |
-
|
641 |
-
def app_customize_ui_texts():
|
642 |
-
webrtc_streamer(
|
643 |
-
key="custom_ui_texts",
|
644 |
-
rtc_configuration=RTC_CONFIGURATION,
|
645 |
-
translations={
|
646 |
-
"start": "開始",
|
647 |
-
"stop": "停止",
|
648 |
-
"select_device": "デバイス選択",
|
649 |
-
"media_api_not_available": "Media APIが利用できない環境です",
|
650 |
-
"device_ask_permission": "メディアデバイスへのアクセスを許可してください",
|
651 |
-
"device_not_available": "メディアデバイスを利用できません",
|
652 |
-
"device_access_denied": "メディアデバイスへのアクセスが拒否されました",
|
653 |
-
},
|
654 |
-
)
|
655 |
-
|
656 |
-
|
657 |
-
if __name__ == "__main__":
|
658 |
-
import os
|
659 |
-
|
660 |
-
DEBUG = os.environ.get("DEBUG", "false").lower() not in ["false", "no", "0"]
|
661 |
-
|
662 |
-
logging.basicConfig(
|
663 |
-
format="[%(asctime)s] %(levelname)7s from %(name)s in %(pathname)s:%(lineno)d: "
|
664 |
-
"%(message)s",
|
665 |
-
force=True,
|
666 |
-
)
|
667 |
-
|
668 |
-
logger.setLevel(level=logging.DEBUG if DEBUG else logging.INFO)
|
669 |
-
|
670 |
-
st_webrtc_logger = logging.getLogger("streamlit_webrtc")
|
671 |
-
st_webrtc_logger.setLevel(logging.DEBUG)
|
672 |
-
|
673 |
-
fsevents_logger = logging.getLogger("fsevents")
|
674 |
-
fsevents_logger.setLevel(logging.WARNING)
|
675 |
-
|
676 |
-
main()
|
|
|
1 |
+
"""Object detection demo with MobileNet SSD.
|
2 |
+
This model and code are based on
|
3 |
+
https://github.com/robmarkcole/object-detection-app
|
4 |
+
"""
|
5 |
+
|
6 |
import logging
|
7 |
import queue
|
|
|
|
|
8 |
from pathlib import Path
|
9 |
+
from typing import List, NamedTuple
|
10 |
|
11 |
import av
|
12 |
import cv2
|
|
|
13 |
import numpy as np
|
|
|
14 |
import streamlit as st
|
15 |
+
from streamlit_webrtc import WebRtcMode, webrtc_streamer
|
16 |
|
17 |
+
from sample_utils.download import download_file
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
HERE = Path(__file__).parent
|
20 |
+
ROOT = HERE.parent
|
21 |
|
22 |
logger = logging.getLogger(__name__)
|
23 |
|
24 |
|
25 |
+
MODEL_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.caffemodel" # noqa: E501
|
26 |
+
MODEL_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.caffemodel"
|
27 |
+
PROTOTXT_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.prototxt.txt" # noqa: E501
|
28 |
+
PROTOTXT_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.prototxt.txt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
CLASSES = [
|
31 |
+
"background",
|
32 |
+
"aeroplane",
|
33 |
+
"bicycle",
|
34 |
+
"bird",
|
35 |
+
"boat",
|
36 |
+
"bottle",
|
37 |
+
"bus",
|
38 |
+
"car",
|
39 |
+
"cat",
|
40 |
+
"chair",
|
41 |
+
"cow",
|
42 |
+
"diningtable",
|
43 |
+
"dog",
|
44 |
+
"horse",
|
45 |
+
"motorbike",
|
46 |
+
"person",
|
47 |
+
"pottedplant",
|
48 |
+
"sheep",
|
49 |
+
"sofa",
|
50 |
+
"train",
|
51 |
+
"tvmonitor",
|
52 |
+
]
|
53 |
|
54 |
|
55 |
+
@st.experimental_singleton # type: ignore # See https://github.com/python/mypy/issues/7781, https://github.com/python/mypy/issues/12566 # noqa: E501
|
56 |
+
def generate_label_colors():
|
57 |
+
return np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
58 |
|
59 |
|
60 |
+
COLORS = generate_label_colors()
|
|
|
61 |
|
62 |
+
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
|
63 |
+
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
|
64 |
|
65 |
+
DEFAULT_CONFIDENCE_THRESHOLD = 0.5
|
|
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
class Detection(NamedTuple):
|
69 |
+
name: str
|
70 |
+
prob: float
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# Session-specific caching
|
74 |
+
cache_key = "object_detection_dnn"
|
75 |
+
if cache_key in st.session_state:
|
76 |
+
net = st.session_state[cache_key]
|
77 |
+
else:
|
78 |
+
net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH))
|
79 |
+
st.session_state[cache_key] = net
|
80 |
|
81 |
+
streaming_placeholder = st.empty()
|
|
|
82 |
|
83 |
+
confidence_threshold = st.slider(
|
84 |
+
"Confidence threshold", 0.0, 1.0, DEFAULT_CONFIDENCE_THRESHOLD, 0.05
|
85 |
+
)
|
|
|
|
|
|
|
|
|
|
|
86 |
|
|
|
87 |
|
88 |
+
def _annotate_image(image, detections):
|
89 |
+
# loop over the detections
|
90 |
+
(h, w) = image.shape[:2]
|
91 |
+
result: List[Detection] = []
|
92 |
+
for i in np.arange(0, detections.shape[2]):
|
93 |
+
confidence = detections[0, 0, i, 2]
|
94 |
+
|
95 |
+
if confidence > confidence_threshold:
|
96 |
+
# extract the index of the class label from the `detections`,
|
97 |
+
# then compute the (x, y)-coordinates of the bounding box for
|
98 |
+
# the object
|
99 |
+
idx = int(detections[0, 0, i, 1])
|
100 |
+
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
101 |
+
(startX, startY, endX, endY) = box.astype("int")
|
102 |
+
|
103 |
+
name = CLASSES[idx]
|
104 |
+
result.append(Detection(name=name, prob=float(confidence)))
|
105 |
+
|
106 |
+
# display the prediction
|
107 |
+
label = f"{name}: {round(confidence * 100, 2)}%"
|
108 |
+
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2)
|
109 |
+
y = startY - 15 if startY - 15 > 15 else startY + 15
|
110 |
+
cv2.putText(
|
111 |
+
image,
|
112 |
+
label,
|
113 |
+
(startX, y),
|
114 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
115 |
+
0.5,
|
116 |
+
COLORS[idx],
|
117 |
+
2,
|
118 |
+
)
|
119 |
+
return image, result
|
120 |
|
|
|
|
|
|
|
121 |
|
122 |
+
result_queue: queue.Queue = (
|
123 |
+
queue.Queue()
|
124 |
+
) # TODO: A general-purpose shared state object may be more useful.
|
|
|
|
|
|
|
|
|
125 |
|
126 |
|
127 |
+
def callback(frame: av.VideoFrame) -> av.VideoFrame:
|
128 |
+
image = frame.to_ndarray(format="bgr24")
|
129 |
+
blob = cv2.dnn.blobFromImage(
|
130 |
+
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
)
|
132 |
+
net.setInput(blob)
|
133 |
+
detections = net.forward()
|
134 |
+
annotated_image, result = _annotate_image(image, detections)
|
135 |
|
136 |
+
# NOTE: This `recv` method is called in another thread,
|
137 |
+
# so it must be thread-safe.
|
138 |
+
result_queue.put(result) # TODO:
|
139 |
|
140 |
+
return av.VideoFrame.from_ndarray(annotated_image, format="bgr24")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
with streaming_placeholder.container():
|
144 |
webrtc_ctx = webrtc_streamer(
|
145 |
key="object-detection",
|
146 |
mode=WebRtcMode.SENDRECV,
|
147 |
+
rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]},
|
148 |
video_frame_callback=callback,
|
149 |
media_stream_constraints={"video": True, "audio": False},
|
150 |
async_processing=True,
|
151 |
)
|
152 |
|
153 |
+
if st.checkbox("Show the detected labels", value=True):
|
154 |
+
if webrtc_ctx.state.playing:
|
155 |
+
labels_placeholder = st.empty()
|
156 |
+
# NOTE: The video transformation with object detection and
|
157 |
+
# this loop displaying the result labels are running
|
158 |
+
# in different threads asynchronously.
|
159 |
+
# Then the rendered video frames and the labels displayed here
|
160 |
+
# are not strictly synchronized.
|
161 |
+
while True:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
try:
|
163 |
+
result = result_queue.get(timeout=1.0)
|
164 |
except queue.Empty:
|
165 |
+
result = None
|
166 |
+
labels_placeholder.table(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
st.markdown(
|
169 |
+
"This demo uses a model and code from "
|
170 |
+
"https://github.com/robmarkcole/object-detection-app. "
|
171 |
+
"Many thanks to the project."
|
172 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|