Update app.py and requirements.txt
Browse files- app.py +216 -32
- requirements.txt +6 -4
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
|
|
1 |
import logging
|
2 |
import logging.handlers
|
3 |
import queue
|
|
|
4 |
import urllib.request
|
5 |
from pathlib import Path
|
6 |
from typing import List, NamedTuple
|
@@ -12,13 +14,16 @@ except ImportError:
|
|
12 |
|
13 |
import av
|
14 |
import cv2
|
|
|
15 |
import numpy as np
|
|
|
16 |
import streamlit as st
|
17 |
from aiortc.contrib.media import MediaPlayer
|
18 |
|
19 |
from streamlit_webrtc import (
|
|
|
20 |
ClientSettings,
|
21 |
-
|
22 |
WebRtcMode,
|
23 |
webrtc_streamer,
|
24 |
)
|
@@ -87,18 +92,28 @@ def main():
|
|
87 |
video_filters_page = (
|
88 |
"Real time video transform with simple OpenCV filters (sendrecv)"
|
89 |
)
|
|
|
|
|
90 |
streaming_page = (
|
91 |
"Consuming media files on server-side and streaming it to browser (recvonly)"
|
92 |
)
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
95 |
app_mode = st.sidebar.selectbox(
|
96 |
"Choose the app mode",
|
97 |
[
|
98 |
object_detection_page,
|
99 |
video_filters_page,
|
|
|
|
|
100 |
streaming_page,
|
101 |
-
|
|
|
102 |
loopback_page,
|
103 |
],
|
104 |
)
|
@@ -108,13 +123,24 @@ def main():
|
|
108 |
app_video_filters()
|
109 |
elif app_mode == object_detection_page:
|
110 |
app_object_detection()
|
|
|
|
|
|
|
|
|
111 |
elif app_mode == streaming_page:
|
112 |
app_streaming()
|
113 |
-
elif app_mode ==
|
114 |
-
|
|
|
|
|
115 |
elif app_mode == loopback_page:
|
116 |
app_loopback()
|
117 |
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
def app_loopback():
|
120 |
""" Simple video loopback """
|
@@ -122,20 +148,20 @@ def app_loopback():
|
|
122 |
key="loopback",
|
123 |
mode=WebRtcMode.SENDRECV,
|
124 |
client_settings=WEBRTC_CLIENT_SETTINGS,
|
125 |
-
|
126 |
)
|
127 |
|
128 |
|
129 |
def app_video_filters():
|
130 |
""" Video transforms with OpenCV """
|
131 |
|
132 |
-
class
|
133 |
type: Literal["noop", "cartoon", "edges", "rotate"]
|
134 |
|
135 |
def __init__(self) -> None:
|
136 |
self.type = "noop"
|
137 |
|
138 |
-
def
|
139 |
img = frame.to_ndarray(format="bgr24")
|
140 |
|
141 |
if self.type == "noop":
|
@@ -170,18 +196,18 @@ def app_video_filters():
|
|
170 |
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1)
|
171 |
img = cv2.warpAffine(img, M, (cols, rows))
|
172 |
|
173 |
-
return img
|
174 |
|
175 |
webrtc_ctx = webrtc_streamer(
|
176 |
key="opencv-filter",
|
177 |
mode=WebRtcMode.SENDRECV,
|
178 |
client_settings=WEBRTC_CLIENT_SETTINGS,
|
179 |
-
|
180 |
-
|
181 |
)
|
182 |
|
183 |
-
if webrtc_ctx.
|
184 |
-
webrtc_ctx.
|
185 |
"Select transform type", ("noop", "cartoon", "edges", "rotate")
|
186 |
)
|
187 |
|
@@ -192,6 +218,82 @@ def app_video_filters():
|
|
192 |
)
|
193 |
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
def app_object_detection():
|
196 |
"""Object detection demo with MobileNet SSD.
|
197 |
This model and code are based on
|
@@ -236,7 +338,7 @@ def app_object_detection():
|
|
236 |
name: str
|
237 |
prob: float
|
238 |
|
239 |
-
class
|
240 |
confidence_threshold: float
|
241 |
result_queue: "queue.Queue[List[Detection]]"
|
242 |
|
@@ -280,7 +382,7 @@ def app_object_detection():
|
|
280 |
)
|
281 |
return image, result
|
282 |
|
283 |
-
def
|
284 |
image = frame.to_ndarray(format="bgr24")
|
285 |
blob = cv2.dnn.blobFromImage(
|
286 |
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
|
@@ -289,25 +391,25 @@ def app_object_detection():
|
|
289 |
detections = self._net.forward()
|
290 |
annotated_image, result = self._annotate_image(image, detections)
|
291 |
|
292 |
-
# NOTE: This `
|
293 |
# so it must be thread-safe.
|
294 |
self.result_queue.put(result)
|
295 |
|
296 |
-
return annotated_image
|
297 |
|
298 |
webrtc_ctx = webrtc_streamer(
|
299 |
key="object-detection",
|
300 |
mode=WebRtcMode.SENDRECV,
|
301 |
client_settings=WEBRTC_CLIENT_SETTINGS,
|
302 |
-
|
303 |
-
|
304 |
)
|
305 |
|
306 |
confidence_threshold = st.slider(
|
307 |
"Confidence threshold", 0.0, 1.0, DEFAULT_CONFIDENCE_THRESHOLD, 0.05
|
308 |
)
|
309 |
-
if webrtc_ctx.
|
310 |
-
webrtc_ctx.
|
311 |
|
312 |
if st.checkbox("Show the detected labels", value=True):
|
313 |
if webrtc_ctx.state.playing:
|
@@ -318,9 +420,9 @@ def app_object_detection():
|
|
318 |
# Then the rendered video frames and the labels displayed here
|
319 |
# are not strictly synchronized.
|
320 |
while True:
|
321 |
-
if webrtc_ctx.
|
322 |
try:
|
323 |
-
result = webrtc_ctx.
|
324 |
timeout=1.0
|
325 |
)
|
326 |
except queue.Empty:
|
@@ -393,7 +495,7 @@ def app_streaming():
|
|
393 |
)
|
394 |
|
395 |
|
396 |
-
def
|
397 |
"""A sample to use WebRTC in sendonly mode to transfer frames
|
398 |
from the browser to the server and to render frames via `st.image`."""
|
399 |
webrtc_ctx = webrtc_streamer(
|
@@ -402,28 +504,110 @@ def app_sendonly():
|
|
402 |
client_settings=WEBRTC_CLIENT_SETTINGS,
|
403 |
)
|
404 |
|
|
|
|
|
405 |
if webrtc_ctx.video_receiver:
|
406 |
-
image_loc = st.empty()
|
407 |
while True:
|
408 |
try:
|
409 |
-
|
410 |
except queue.Empty:
|
411 |
-
|
412 |
-
webrtc_ctx.video_receiver.stop()
|
413 |
break
|
414 |
|
415 |
-
img_rgb =
|
416 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
|
418 |
|
419 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
420 |
logging.basicConfig(
|
421 |
format="[%(asctime)s] %(levelname)7s from %(name)s in %(pathname)s:%(lineno)d: "
|
422 |
"%(message)s",
|
423 |
force=True,
|
424 |
)
|
425 |
|
426 |
-
logger.setLevel(level=logging.DEBUG)
|
427 |
|
428 |
st_webrtc_logger = logging.getLogger("streamlit_webrtc")
|
429 |
st_webrtc_logger.setLevel(logging.DEBUG)
|
|
|
1 |
+
import asyncio
|
2 |
import logging
|
3 |
import logging.handlers
|
4 |
import queue
|
5 |
+
import threading
|
6 |
import urllib.request
|
7 |
from pathlib import Path
|
8 |
from typing import List, NamedTuple
|
|
|
14 |
|
15 |
import av
|
16 |
import cv2
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
import numpy as np
|
19 |
+
import pydub
|
20 |
import streamlit as st
|
21 |
from aiortc.contrib.media import MediaPlayer
|
22 |
|
23 |
from streamlit_webrtc import (
|
24 |
+
AudioProcessorBase,
|
25 |
ClientSettings,
|
26 |
+
VideoProcessorBase,
|
27 |
WebRtcMode,
|
28 |
webrtc_streamer,
|
29 |
)
|
|
|
92 |
video_filters_page = (
|
93 |
"Real time video transform with simple OpenCV filters (sendrecv)"
|
94 |
)
|
95 |
+
audio_filter_page = "Real time audio filter (sendrecv)"
|
96 |
+
delayed_echo_page = "Delayed echo (sendrecv)"
|
97 |
streaming_page = (
|
98 |
"Consuming media files on server-side and streaming it to browser (recvonly)"
|
99 |
)
|
100 |
+
video_sendonly_page = (
|
101 |
+
"WebRTC is sendonly and images are shown via st.image() (sendonly)"
|
102 |
+
)
|
103 |
+
audio_sendonly_page = (
|
104 |
+
"WebRTC is sendonly and audio frames are visualized with matplotlib (sendonly)"
|
105 |
+
)
|
106 |
+
loopback_page = "Simple video and audio loopback (sendrecv)"
|
107 |
app_mode = st.sidebar.selectbox(
|
108 |
"Choose the app mode",
|
109 |
[
|
110 |
object_detection_page,
|
111 |
video_filters_page,
|
112 |
+
audio_filter_page,
|
113 |
+
delayed_echo_page,
|
114 |
streaming_page,
|
115 |
+
video_sendonly_page,
|
116 |
+
audio_sendonly_page,
|
117 |
loopback_page,
|
118 |
],
|
119 |
)
|
|
|
123 |
app_video_filters()
|
124 |
elif app_mode == object_detection_page:
|
125 |
app_object_detection()
|
126 |
+
elif app_mode == audio_filter_page:
|
127 |
+
app_audio_filter()
|
128 |
+
elif app_mode == delayed_echo_page:
|
129 |
+
app_delayed_echo()
|
130 |
elif app_mode == streaming_page:
|
131 |
app_streaming()
|
132 |
+
elif app_mode == video_sendonly_page:
|
133 |
+
app_sendonly_video()
|
134 |
+
elif app_mode == audio_sendonly_page:
|
135 |
+
app_sendonly_audio()
|
136 |
elif app_mode == loopback_page:
|
137 |
app_loopback()
|
138 |
|
139 |
+
logger.debug("=== Alive threads ===")
|
140 |
+
for thread in threading.enumerate():
|
141 |
+
if thread.is_alive():
|
142 |
+
logger.debug(f" {thread.name} ({thread.ident})")
|
143 |
+
|
144 |
|
145 |
def app_loopback():
|
146 |
""" Simple video loopback """
|
|
|
148 |
key="loopback",
|
149 |
mode=WebRtcMode.SENDRECV,
|
150 |
client_settings=WEBRTC_CLIENT_SETTINGS,
|
151 |
+
video_processor_factory=None, # NoOp
|
152 |
)
|
153 |
|
154 |
|
155 |
def app_video_filters():
|
156 |
""" Video transforms with OpenCV """
|
157 |
|
158 |
+
class OpenCVVideoProcessor(VideoProcessorBase):
|
159 |
type: Literal["noop", "cartoon", "edges", "rotate"]
|
160 |
|
161 |
def __init__(self) -> None:
|
162 |
self.type = "noop"
|
163 |
|
164 |
+
def recv(self, frame: av.VideoFrame) -> av.VideoFrame:
|
165 |
img = frame.to_ndarray(format="bgr24")
|
166 |
|
167 |
if self.type == "noop":
|
|
|
196 |
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1)
|
197 |
img = cv2.warpAffine(img, M, (cols, rows))
|
198 |
|
199 |
+
return av.VideoFrame.from_ndarray(img, format="bgr24")
|
200 |
|
201 |
webrtc_ctx = webrtc_streamer(
|
202 |
key="opencv-filter",
|
203 |
mode=WebRtcMode.SENDRECV,
|
204 |
client_settings=WEBRTC_CLIENT_SETTINGS,
|
205 |
+
video_processor_factory=OpenCVVideoProcessor,
|
206 |
+
async_processing=True,
|
207 |
)
|
208 |
|
209 |
+
if webrtc_ctx.video_processor:
|
210 |
+
webrtc_ctx.video_processor.type = st.radio(
|
211 |
"Select transform type", ("noop", "cartoon", "edges", "rotate")
|
212 |
)
|
213 |
|
|
|
218 |
)
|
219 |
|
220 |
|
221 |
+
def app_audio_filter():
|
222 |
+
DEFAULT_GAIN = 1.0
|
223 |
+
|
224 |
+
class AudioProcessor(AudioProcessorBase):
|
225 |
+
gain = DEFAULT_GAIN
|
226 |
+
|
227 |
+
def recv(self, frame: av.AudioFrame) -> av.AudioFrame:
|
228 |
+
raw_samples = frame.to_ndarray()
|
229 |
+
sound = pydub.AudioSegment(
|
230 |
+
data=raw_samples.tobytes(),
|
231 |
+
sample_width=frame.format.bytes,
|
232 |
+
frame_rate=frame.sample_rate,
|
233 |
+
channels=len(frame.layout.channels),
|
234 |
+
)
|
235 |
+
|
236 |
+
sound = sound.apply_gain(self.gain)
|
237 |
+
|
238 |
+
# Ref: https://github.com/jiaaro/pydub/blob/master/API.markdown#audiosegmentget_array_of_samples # noqa
|
239 |
+
channel_sounds = sound.split_to_mono()
|
240 |
+
channel_samples = [s.get_array_of_samples() for s in channel_sounds]
|
241 |
+
new_samples: np.ndarray = np.array(channel_samples).T
|
242 |
+
new_samples = new_samples.reshape(raw_samples.shape)
|
243 |
+
|
244 |
+
new_frame = av.AudioFrame.from_ndarray(
|
245 |
+
new_samples, layout=frame.layout.name
|
246 |
+
)
|
247 |
+
new_frame.sample_rate = frame.sample_rate
|
248 |
+
return new_frame
|
249 |
+
|
250 |
+
webrtc_ctx = webrtc_streamer(
|
251 |
+
key="audio-filter",
|
252 |
+
mode=WebRtcMode.SENDRECV,
|
253 |
+
client_settings=WEBRTC_CLIENT_SETTINGS,
|
254 |
+
audio_processor_factory=AudioProcessor,
|
255 |
+
async_processing=True,
|
256 |
+
)
|
257 |
+
|
258 |
+
if webrtc_ctx.audio_processor:
|
259 |
+
webrtc_ctx.audio_processor.gain = st.slider(
|
260 |
+
"Gain", -10.0, +20.0, DEFAULT_GAIN, 0.05
|
261 |
+
)
|
262 |
+
|
263 |
+
|
264 |
+
def app_delayed_echo():
|
265 |
+
DEFAULT_DELAY = 1.0
|
266 |
+
|
267 |
+
class VideoProcessor(VideoProcessorBase):
|
268 |
+
delay = DEFAULT_DELAY
|
269 |
+
|
270 |
+
async def recv_queued(self, frames: List[av.VideoFrame]) -> List[av.VideoFrame]:
|
271 |
+
logger.debug("Delay:", self.delay)
|
272 |
+
await asyncio.sleep(self.delay)
|
273 |
+
return frames
|
274 |
+
|
275 |
+
class AudioProcessor(AudioProcessorBase):
|
276 |
+
delay = DEFAULT_DELAY
|
277 |
+
|
278 |
+
async def recv_queued(self, frames: List[av.AudioFrame]) -> List[av.AudioFrame]:
|
279 |
+
await asyncio.sleep(self.delay)
|
280 |
+
return frames
|
281 |
+
|
282 |
+
webrtc_ctx = webrtc_streamer(
|
283 |
+
key="delay",
|
284 |
+
mode=WebRtcMode.SENDRECV,
|
285 |
+
client_settings=WEBRTC_CLIENT_SETTINGS,
|
286 |
+
video_processor_factory=VideoProcessor,
|
287 |
+
audio_processor_factory=AudioProcessor,
|
288 |
+
async_processing=True,
|
289 |
+
)
|
290 |
+
|
291 |
+
if webrtc_ctx.video_processor and webrtc_ctx.audio_processor:
|
292 |
+
delay = st.slider("Delay", 0.0, 5.0, DEFAULT_DELAY, 0.05)
|
293 |
+
webrtc_ctx.video_processor.delay = delay
|
294 |
+
webrtc_ctx.audio_processor.delay = delay
|
295 |
+
|
296 |
+
|
297 |
def app_object_detection():
|
298 |
"""Object detection demo with MobileNet SSD.
|
299 |
This model and code are based on
|
|
|
338 |
name: str
|
339 |
prob: float
|
340 |
|
341 |
+
class MobileNetSSDVideoProcessor(VideoProcessorBase):
|
342 |
confidence_threshold: float
|
343 |
result_queue: "queue.Queue[List[Detection]]"
|
344 |
|
|
|
382 |
)
|
383 |
return image, result
|
384 |
|
385 |
+
def recv(self, frame: av.VideoFrame) -> av.VideoFrame:
|
386 |
image = frame.to_ndarray(format="bgr24")
|
387 |
blob = cv2.dnn.blobFromImage(
|
388 |
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
|
|
|
391 |
detections = self._net.forward()
|
392 |
annotated_image, result = self._annotate_image(image, detections)
|
393 |
|
394 |
+
# NOTE: This `recv` method is called in another thread,
|
395 |
# so it must be thread-safe.
|
396 |
self.result_queue.put(result)
|
397 |
|
398 |
+
return av.VideoFrame.from_ndarray(annotated_image, format="bgr24")
|
399 |
|
400 |
webrtc_ctx = webrtc_streamer(
|
401 |
key="object-detection",
|
402 |
mode=WebRtcMode.SENDRECV,
|
403 |
client_settings=WEBRTC_CLIENT_SETTINGS,
|
404 |
+
video_processor_factory=MobileNetSSDVideoProcessor,
|
405 |
+
async_processing=True,
|
406 |
)
|
407 |
|
408 |
confidence_threshold = st.slider(
|
409 |
"Confidence threshold", 0.0, 1.0, DEFAULT_CONFIDENCE_THRESHOLD, 0.05
|
410 |
)
|
411 |
+
if webrtc_ctx.video_processor:
|
412 |
+
webrtc_ctx.video_processor.confidence_threshold = confidence_threshold
|
413 |
|
414 |
if st.checkbox("Show the detected labels", value=True):
|
415 |
if webrtc_ctx.state.playing:
|
|
|
420 |
# Then the rendered video frames and the labels displayed here
|
421 |
# are not strictly synchronized.
|
422 |
while True:
|
423 |
+
if webrtc_ctx.video_processor:
|
424 |
try:
|
425 |
+
result = webrtc_ctx.video_processor.result_queue.get(
|
426 |
timeout=1.0
|
427 |
)
|
428 |
except queue.Empty:
|
|
|
495 |
)
|
496 |
|
497 |
|
498 |
+
def app_sendonly_video():
|
499 |
"""A sample to use WebRTC in sendonly mode to transfer frames
|
500 |
from the browser to the server and to render frames via `st.image`."""
|
501 |
webrtc_ctx = webrtc_streamer(
|
|
|
504 |
client_settings=WEBRTC_CLIENT_SETTINGS,
|
505 |
)
|
506 |
|
507 |
+
image_place = st.empty()
|
508 |
+
|
509 |
if webrtc_ctx.video_receiver:
|
|
|
510 |
while True:
|
511 |
try:
|
512 |
+
video_frame = webrtc_ctx.video_receiver.get_frame(timeout=1)
|
513 |
except queue.Empty:
|
514 |
+
logger.warning("Queue is empty. Abort.")
|
|
|
515 |
break
|
516 |
|
517 |
+
img_rgb = video_frame.to_ndarray(format="rgb24")
|
518 |
+
image_place.image(img_rgb)
|
519 |
+
|
520 |
+
|
521 |
+
def app_sendonly_audio():
|
522 |
+
"""A sample to use WebRTC in sendonly mode to transfer audio frames
|
523 |
+
from the browser to the server and visualize them with matplotlib
|
524 |
+
and `st.pyplog`."""
|
525 |
+
webrtc_ctx = webrtc_streamer(
|
526 |
+
key="loopback",
|
527 |
+
mode=WebRtcMode.SENDONLY,
|
528 |
+
audio_receiver_size=64,
|
529 |
+
client_settings=WEBRTC_CLIENT_SETTINGS,
|
530 |
+
)
|
531 |
+
|
532 |
+
fig_place = st.empty()
|
533 |
+
|
534 |
+
fig, [ax_time, ax_freq] = plt.subplots(
|
535 |
+
2, 1, gridspec_kw={"top": 1.5, "bottom": 0.2}
|
536 |
+
)
|
537 |
+
|
538 |
+
sound_window_len = 5000 # 5s
|
539 |
+
sound_window_buffer = None
|
540 |
+
while True:
|
541 |
+
if webrtc_ctx.audio_receiver:
|
542 |
+
try:
|
543 |
+
audio_frames = webrtc_ctx.audio_receiver.get_frames(timeout=1)
|
544 |
+
except queue.Empty:
|
545 |
+
logger.warning("Queue is empty. Abort.")
|
546 |
+
break
|
547 |
+
|
548 |
+
sound_chunk = pydub.AudioSegment.empty()
|
549 |
+
for audio_frame in audio_frames:
|
550 |
+
sound = pydub.AudioSegment(
|
551 |
+
data=audio_frame.to_ndarray().tobytes(),
|
552 |
+
sample_width=audio_frame.format.bytes,
|
553 |
+
frame_rate=audio_frame.sample_rate,
|
554 |
+
channels=len(audio_frame.layout.channels),
|
555 |
+
)
|
556 |
+
sound_chunk += sound
|
557 |
+
|
558 |
+
if len(sound_chunk) > 0:
|
559 |
+
if sound_window_buffer is None:
|
560 |
+
sound_window_buffer = pydub.AudioSegment.silent(
|
561 |
+
duration=sound_window_len
|
562 |
+
)
|
563 |
+
|
564 |
+
sound_window_buffer += sound_chunk
|
565 |
+
if len(sound_window_buffer) > sound_window_len:
|
566 |
+
sound_window_buffer = sound_window_buffer[-sound_window_len:]
|
567 |
+
|
568 |
+
if sound_window_buffer:
|
569 |
+
# Ref: https://own-search-and-study.xyz/2017/10/27/python%E3%82%92%E4%BD%BF%E3%81%A3%E3%81%A6%E9%9F%B3%E5%A3%B0%E3%83%87%E3%83%BC%E3%82%BF%E3%81%8B%E3%82%89%E3%82%B9%E3%83%9A%E3%82%AF%E3%83%88%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%A0%E3%82%92%E4%BD%9C/ # noqa
|
570 |
+
sound_window_buffer = sound_window_buffer.set_channels(
|
571 |
+
1
|
572 |
+
) # Stereo to mono
|
573 |
+
sample = np.array(sound_window_buffer.get_array_of_samples())
|
574 |
+
|
575 |
+
ax_time.cla()
|
576 |
+
times = (np.arange(-len(sample), 0)) / sound_window_buffer.frame_rate
|
577 |
+
ax_time.plot(times, sample)
|
578 |
+
ax_time.set_xlabel("Time")
|
579 |
+
ax_time.set_ylabel("Magnitude")
|
580 |
+
|
581 |
+
spec = np.fft.fft(sample)
|
582 |
+
freq = np.fft.fftfreq(sample.shape[0], 1.0 / sound_chunk.frame_rate)
|
583 |
+
freq = freq[: int(freq.shape[0] / 2)]
|
584 |
+
spec = spec[: int(spec.shape[0] / 2)]
|
585 |
+
spec[0] = spec[0] / 2
|
586 |
+
|
587 |
+
ax_freq.cla()
|
588 |
+
ax_freq.plot(freq, np.abs(spec))
|
589 |
+
ax_freq.set_xlabel("Frequency")
|
590 |
+
ax_freq.set_yscale("log")
|
591 |
+
ax_freq.set_ylabel("Magnitude")
|
592 |
+
|
593 |
+
fig_place.pyplot(fig)
|
594 |
+
else:
|
595 |
+
logger.warning("AudioReciver is not set. Abort.")
|
596 |
+
break
|
597 |
|
598 |
|
599 |
if __name__ == "__main__":
|
600 |
+
import os
|
601 |
+
|
602 |
+
DEBUG = os.environ.get("DEBUG", "false").lower() not in ["false", "no", "0"]
|
603 |
+
|
604 |
logging.basicConfig(
|
605 |
format="[%(asctime)s] %(levelname)7s from %(name)s in %(pathname)s:%(lineno)d: "
|
606 |
"%(message)s",
|
607 |
force=True,
|
608 |
)
|
609 |
|
610 |
+
logger.setLevel(level=logging.DEBUG if DEBUG else logging.INFO)
|
611 |
|
612 |
st_webrtc_logger = logging.getLogger("streamlit_webrtc")
|
613 |
st_webrtc_logger.setLevel(logging.DEBUG)
|
requirements.txt
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
-
aiortc==1.2
|
2 |
av==8.0.3
|
3 |
-
|
|
|
4 |
opencv_python==4.5.1.48
|
5 |
-
|
6 |
-
|
|
|
7 |
typing_extensions==3.7.4.3
|
|
|
1 |
+
aiortc==1.1.2
|
2 |
av==8.0.3
|
3 |
+
matplotlib==3.4.2
|
4 |
+
numpy==1.19.5
|
5 |
opencv_python==4.5.1.48
|
6 |
+
pydub==0.25.1
|
7 |
+
streamlit==0.75.0
|
8 |
+
streamlit_webrtc==0.20.0
|
9 |
typing_extensions==3.7.4.3
|