import asyncio import logging import queue import threading import urllib.request from pathlib import Path from typing import List, NamedTuple try: from typing import Literal except ImportError: from typing_extensions import Literal # type: ignore import av import cv2 import matplotlib.pyplot as plt import numpy as np import pydub import streamlit as st from aiortc.contrib.media import MediaPlayer from streamlit_webrtc import ( AudioProcessorBase, RTCConfiguration, VideoProcessorBase, WebRtcMode, webrtc_streamer, ) HERE = Path(__file__).parent logger = logging.getLogger(__name__) # This code is based on https://github.com/streamlit/demo-self-driving/blob/230245391f2dda0cb464008195a470751c01770b/streamlit_app.py#L48 # noqa: E501 def download_file(url, download_to: Path, expected_size=None): # Don't download the file twice. # (If possible, verify the download using the file length.) if download_to.exists(): if expected_size: if download_to.stat().st_size == expected_size: return else: st.info(f"{url} is already downloaded.") if not st.button("Download again?"): return download_to.parent.mkdir(parents=True, exist_ok=True) # These are handles to two visual elements to animate. weights_warning, progress_bar = None, None try: weights_warning = st.warning("Downloading %s..." % url) progress_bar = st.progress(0) with open(download_to, "wb") as output_file: with urllib.request.urlopen(url) as response: length = int(response.info()["Content-Length"]) counter = 0.0 MEGABYTES = 2.0 ** 20.0 while True: data = response.read(8192) if not data: break counter += len(data) output_file.write(data) # We perform animation by overwriting the elements. weights_warning.warning( "Downloading %s... (%6.2f/%6.2f MB)" % (url, counter / MEGABYTES, length / MEGABYTES) ) progress_bar.progress(min(counter / length, 1.0)) # Finally, we remove these visual elements by calling .empty(). finally: if weights_warning is not None: weights_warning.empty() if progress_bar is not None: progress_bar.empty() RTC_CONFIGURATION = RTCConfiguration( {"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]} ) def main(): st.header("WebRTC demo") object_detection_page = "Real time object detection (sendrecv)" video_filters_page = ( "Real time video transform with simple OpenCV filters (sendrecv)" ) audio_filter_page = "Real time audio filter (sendrecv)" delayed_echo_page = "Delayed echo (sendrecv)" streaming_page = ( "Consuming media files on server-side and streaming it to browser (recvonly)" ) video_sendonly_page = ( "WebRTC is sendonly and images are shown via st.image() (sendonly)" ) audio_sendonly_page = ( "WebRTC is sendonly and audio frames are visualized with matplotlib (sendonly)" ) loopback_page = "Simple video and audio loopback (sendrecv)" media_constraints_page = ( "Configure media constraints and HTML element styles with loopback (sendrecv)" ) programatically_control_page = "Control the playing state programatically" app_mode = st.sidebar.selectbox( "Choose the app mode", [ object_detection_page, video_filters_page, audio_filter_page, delayed_echo_page, streaming_page, video_sendonly_page, audio_sendonly_page, loopback_page, media_constraints_page, programatically_control_page, ], ) st.subheader(app_mode) if app_mode == video_filters_page: app_video_filters() elif app_mode == object_detection_page: app_object_detection() elif app_mode == audio_filter_page: app_audio_filter() elif app_mode == delayed_echo_page: app_delayed_echo() elif app_mode == streaming_page: app_streaming() elif app_mode == video_sendonly_page: app_sendonly_video() elif app_mode == audio_sendonly_page: app_sendonly_audio() elif app_mode == loopback_page: app_loopback() elif app_mode == media_constraints_page: app_media_constraints() elif app_mode == programatically_control_page: app_programatically_play() st.sidebar.markdown( """ --- <a href="https://www.buymeacoffee.com/whitphx" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" width="180" height="50" ></a> """, # noqa: E501 unsafe_allow_html=True, ) logger.debug("=== Alive threads ===") for thread in threading.enumerate(): if thread.is_alive(): logger.debug(f" {thread.name} ({thread.ident})") def app_loopback(): """ Simple video loopback """ webrtc_streamer(key="loopback") def app_video_filters(): """ Video transforms with OpenCV """ class OpenCVVideoProcessor(VideoProcessorBase): type: Literal["noop", "cartoon", "edges", "rotate"] def __init__(self) -> None: self.type = "noop" def recv(self, frame: av.VideoFrame) -> av.VideoFrame: img = frame.to_ndarray(format="bgr24") if self.type == "noop": pass elif self.type == "cartoon": # prepare color img_color = cv2.pyrDown(cv2.pyrDown(img)) for _ in range(6): img_color = cv2.bilateralFilter(img_color, 9, 9, 7) img_color = cv2.pyrUp(cv2.pyrUp(img_color)) # prepare edges img_edges = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) img_edges = cv2.adaptiveThreshold( cv2.medianBlur(img_edges, 7), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2, ) img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB) # combine color and edges img = cv2.bitwise_and(img_color, img_edges) elif self.type == "edges": # perform edge detection img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR) elif self.type == "rotate": # rotate image rows, cols, _ = img.shape M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1) img = cv2.warpAffine(img, M, (cols, rows)) return av.VideoFrame.from_ndarray(img, format="bgr24") webrtc_ctx = webrtc_streamer( key="opencv-filter", mode=WebRtcMode.SENDRECV, rtc_configuration=RTC_CONFIGURATION, video_processor_factory=OpenCVVideoProcessor, media_stream_constraints={"video": True, "audio": False}, async_processing=True, ) if webrtc_ctx.video_processor: webrtc_ctx.video_processor.type = st.radio( "Select transform type", ("noop", "cartoon", "edges", "rotate") ) st.markdown( "This demo is based on " "https://github.com/aiortc/aiortc/blob/2362e6d1f0c730a0f8c387bbea76546775ad2fe8/examples/server/server.py#L34. " # noqa: E501 "Many thanks to the project." ) def app_audio_filter(): DEFAULT_GAIN = 1.0 class AudioProcessor(AudioProcessorBase): gain = DEFAULT_GAIN def recv(self, frame: av.AudioFrame) -> av.AudioFrame: raw_samples = frame.to_ndarray() sound = pydub.AudioSegment( data=raw_samples.tobytes(), sample_width=frame.format.bytes, frame_rate=frame.sample_rate, channels=len(frame.layout.channels), ) sound = sound.apply_gain(self.gain) # Ref: https://github.com/jiaaro/pydub/blob/master/API.markdown#audiosegmentget_array_of_samples # noqa channel_sounds = sound.split_to_mono() channel_samples = [s.get_array_of_samples() for s in channel_sounds] new_samples: np.ndarray = np.array(channel_samples).T new_samples = new_samples.reshape(raw_samples.shape) new_frame = av.AudioFrame.from_ndarray( new_samples, layout=frame.layout.name ) new_frame.sample_rate = frame.sample_rate return new_frame webrtc_ctx = webrtc_streamer( key="audio-filter", mode=WebRtcMode.SENDRECV, rtc_configuration=RTC_CONFIGURATION, audio_processor_factory=AudioProcessor, async_processing=True, ) if webrtc_ctx.audio_processor: webrtc_ctx.audio_processor.gain = st.slider( "Gain", -10.0, +20.0, DEFAULT_GAIN, 0.05 ) def app_delayed_echo(): DEFAULT_DELAY = 1.0 class VideoProcessor(VideoProcessorBase): delay = DEFAULT_DELAY async def recv_queued(self, frames: List[av.VideoFrame]) -> List[av.VideoFrame]: logger.debug("Delay:", self.delay) await asyncio.sleep(self.delay) return frames class AudioProcessor(AudioProcessorBase): delay = DEFAULT_DELAY async def recv_queued(self, frames: List[av.AudioFrame]) -> List[av.AudioFrame]: await asyncio.sleep(self.delay) return frames webrtc_ctx = webrtc_streamer( key="delay", mode=WebRtcMode.SENDRECV, rtc_configuration=RTC_CONFIGURATION, video_processor_factory=VideoProcessor, audio_processor_factory=AudioProcessor, async_processing=True, ) if webrtc_ctx.video_processor and webrtc_ctx.audio_processor: delay = st.slider("Delay", 0.0, 5.0, DEFAULT_DELAY, 0.05) webrtc_ctx.video_processor.delay = delay webrtc_ctx.audio_processor.delay = delay def app_object_detection(): """Object detection demo with MobileNet SSD. This model and code are based on https://github.com/robmarkcole/object-detection-app """ MODEL_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.caffemodel" # noqa: E501 MODEL_LOCAL_PATH = HERE / "./models/MobileNetSSD_deploy.caffemodel" PROTOTXT_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.prototxt.txt" # noqa: E501 PROTOTXT_LOCAL_PATH = HERE / "./models/MobileNetSSD_deploy.prototxt.txt" CLASSES = [ "background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor", ] COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564) download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353) DEFAULT_CONFIDENCE_THRESHOLD = 0.5 class Detection(NamedTuple): name: str prob: float class MobileNetSSDVideoProcessor(VideoProcessorBase): confidence_threshold: float result_queue: "queue.Queue[List[Detection]]" def __init__(self) -> None: self._net = cv2.dnn.readNetFromCaffe( str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH) ) self.confidence_threshold = DEFAULT_CONFIDENCE_THRESHOLD self.result_queue = queue.Queue() def _annotate_image(self, image, detections): # loop over the detections (h, w) = image.shape[:2] result: List[Detection] = [] for i in np.arange(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > self.confidence_threshold: # extract the index of the class label from the `detections`, # then compute the (x, y)-coordinates of the bounding box for # the object idx = int(detections[0, 0, i, 1]) box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") name = CLASSES[idx] result.append(Detection(name=name, prob=float(confidence))) # display the prediction label = f"{name}: {round(confidence * 100, 2)}%" cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2) y = startY - 15 if startY - 15 > 15 else startY + 15 cv2.putText( image, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2, ) return image, result def recv(self, frame: av.VideoFrame) -> av.VideoFrame: image = frame.to_ndarray(format="bgr24") blob = cv2.dnn.blobFromImage( cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5 ) self._net.setInput(blob) detections = self._net.forward() annotated_image, result = self._annotate_image(image, detections) # NOTE: This `recv` method is called in another thread, # so it must be thread-safe. self.result_queue.put(result) return av.VideoFrame.from_ndarray(annotated_image, format="bgr24") webrtc_ctx = webrtc_streamer( key="object-detection", mode=WebRtcMode.SENDRECV, rtc_configuration=RTC_CONFIGURATION, video_processor_factory=MobileNetSSDVideoProcessor, media_stream_constraints={"video": True, "audio": False}, async_processing=True, ) confidence_threshold = st.slider( "Confidence threshold", 0.0, 1.0, DEFAULT_CONFIDENCE_THRESHOLD, 0.05 ) if webrtc_ctx.video_processor: webrtc_ctx.video_processor.confidence_threshold = confidence_threshold if st.checkbox("Show the detected labels", value=True): if webrtc_ctx.state.playing: labels_placeholder = st.empty() # NOTE: The video transformation with object detection and # this loop displaying the result labels are running # in different threads asynchronously. # Then the rendered video frames and the labels displayed here # are not strictly synchronized. while True: if webrtc_ctx.video_processor: try: result = webrtc_ctx.video_processor.result_queue.get( timeout=1.0 ) except queue.Empty: result = None labels_placeholder.table(result) else: break st.markdown( "This demo uses a model and code from " "https://github.com/robmarkcole/object-detection-app. " "Many thanks to the project." ) def app_streaming(): """ Media streamings """ MEDIAFILES = { "big_buck_bunny_720p_2mb.mp4 (local)": { "url": "https://sample-videos.com/video123/mp4/720/big_buck_bunny_720p_2mb.mp4", # noqa: E501 "local_file_path": HERE / "data/big_buck_bunny_720p_2mb.mp4", "type": "video", }, "big_buck_bunny_720p_10mb.mp4 (local)": { "url": "https://sample-videos.com/video123/mp4/720/big_buck_bunny_720p_10mb.mp4", # noqa: E501 "local_file_path": HERE / "data/big_buck_bunny_720p_10mb.mp4", "type": "video", }, "file_example_MP3_700KB.mp3 (local)": { "url": "https://file-examples-com.github.io/uploads/2017/11/file_example_MP3_700KB.mp3", # noqa: E501 "local_file_path": HERE / "data/file_example_MP3_700KB.mp3", "type": "audio", }, "file_example_MP3_5MG.mp3 (local)": { "url": "https://file-examples-com.github.io/uploads/2017/11/file_example_MP3_5MG.mp3", # noqa: E501 "local_file_path": HERE / "data/file_example_MP3_5MG.mp3", "type": "audio", }, "rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mov": { "url": "rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mov", "type": "video", }, } media_file_label = st.radio( "Select a media source to stream", tuple(MEDIAFILES.keys()) ) media_file_info = MEDIAFILES[media_file_label] if "local_file_path" in media_file_info: download_file(media_file_info["url"], media_file_info["local_file_path"]) def create_player(): if "local_file_path" in media_file_info: return MediaPlayer(str(media_file_info["local_file_path"])) else: return MediaPlayer(media_file_info["url"]) # NOTE: To stream the video from webcam, use the code below. # return MediaPlayer( # "1:none", # format="avfoundation", # options={"framerate": "30", "video_size": "1280x720"}, # ) class OpenCVVideoProcessor(VideoProcessorBase): type: Literal["noop", "cartoon", "edges", "rotate"] def __init__(self) -> None: self.type = "noop" def recv(self, frame: av.VideoFrame) -> av.VideoFrame: img = frame.to_ndarray(format="bgr24") if self.type == "noop": pass elif self.type == "cartoon": # prepare color img_color = cv2.pyrDown(cv2.pyrDown(img)) for _ in range(6): img_color = cv2.bilateralFilter(img_color, 9, 9, 7) img_color = cv2.pyrUp(cv2.pyrUp(img_color)) # prepare edges img_edges = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) img_edges = cv2.adaptiveThreshold( cv2.medianBlur(img_edges, 7), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2, ) img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB) # combine color and edges img = cv2.bitwise_and(img_color, img_edges) elif self.type == "edges": # perform edge detection img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR) elif self.type == "rotate": # rotate image rows, cols, _ = img.shape M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1) img = cv2.warpAffine(img, M, (cols, rows)) return av.VideoFrame.from_ndarray(img, format="bgr24") webrtc_ctx = webrtc_streamer( key=f"media-streaming-{media_file_label}", mode=WebRtcMode.RECVONLY, rtc_configuration=RTC_CONFIGURATION, media_stream_constraints={ "video": media_file_info["type"] == "video", "audio": media_file_info["type"] == "audio", }, player_factory=create_player, video_processor_factory=OpenCVVideoProcessor, ) if media_file_info["type"] == "video" and webrtc_ctx.video_processor: webrtc_ctx.video_processor.type = st.radio( "Select transform type", ("noop", "cartoon", "edges", "rotate") ) st.markdown( "The video filter in this demo is based on " "https://github.com/aiortc/aiortc/blob/2362e6d1f0c730a0f8c387bbea76546775ad2fe8/examples/server/server.py#L34. " # noqa: E501 "Many thanks to the project." ) def app_sendonly_video(): """A sample to use WebRTC in sendonly mode to transfer frames from the browser to the server and to render frames via `st.image`.""" webrtc_ctx = webrtc_streamer( key="video-sendonly", mode=WebRtcMode.SENDONLY, rtc_configuration=RTC_CONFIGURATION, media_stream_constraints={"video": True}, ) image_place = st.empty() while True: if webrtc_ctx.video_receiver: try: video_frame = webrtc_ctx.video_receiver.get_frame(timeout=1) except queue.Empty: logger.warning("Queue is empty. Abort.") break img_rgb = video_frame.to_ndarray(format="rgb24") image_place.image(img_rgb) else: logger.warning("AudioReciver is not set. Abort.") break def app_sendonly_audio(): """A sample to use WebRTC in sendonly mode to transfer audio frames from the browser to the server and visualize them with matplotlib and `st.pyplot`.""" webrtc_ctx = webrtc_streamer( key="sendonly-audio", mode=WebRtcMode.SENDONLY, audio_receiver_size=256, rtc_configuration=RTC_CONFIGURATION, media_stream_constraints={"audio": True}, ) fig_place = st.empty() fig, [ax_time, ax_freq] = plt.subplots( 2, 1, gridspec_kw={"top": 1.5, "bottom": 0.2} ) sound_window_len = 5000 # 5s sound_window_buffer = None while True: if webrtc_ctx.audio_receiver: try: audio_frames = webrtc_ctx.audio_receiver.get_frames(timeout=1) except queue.Empty: logger.warning("Queue is empty. Abort.") break sound_chunk = pydub.AudioSegment.empty() for audio_frame in audio_frames: sound = pydub.AudioSegment( data=audio_frame.to_ndarray().tobytes(), sample_width=audio_frame.format.bytes, frame_rate=audio_frame.sample_rate, channels=len(audio_frame.layout.channels), ) sound_chunk += sound if len(sound_chunk) > 0: if sound_window_buffer is None: sound_window_buffer = pydub.AudioSegment.silent( duration=sound_window_len ) sound_window_buffer += sound_chunk if len(sound_window_buffer) > sound_window_len: sound_window_buffer = sound_window_buffer[-sound_window_len:] if sound_window_buffer: # Ref: https://own-search-and-study.xyz/2017/10/27/python%E3%82%92%E4%BD%BF%E3%81%A3%E3%81%A6%E9%9F%B3%E5%A3%B0%E3%83%87%E3%83%BC%E3%82%BF%E3%81%8B%E3%82%89%E3%82%B9%E3%83%9A%E3%82%AF%E3%83%88%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%A0%E3%82%92%E4%BD%9C/ # noqa sound_window_buffer = sound_window_buffer.set_channels( 1 ) # Stereo to mono sample = np.array(sound_window_buffer.get_array_of_samples()) ax_time.cla() times = (np.arange(-len(sample), 0)) / sound_window_buffer.frame_rate ax_time.plot(times, sample) ax_time.set_xlabel("Time") ax_time.set_ylabel("Magnitude") spec = np.fft.fft(sample) freq = np.fft.fftfreq(sample.shape[0], 1.0 / sound_chunk.frame_rate) freq = freq[: int(freq.shape[0] / 2)] spec = spec[: int(spec.shape[0] / 2)] spec[0] = spec[0] / 2 ax_freq.cla() ax_freq.plot(freq, np.abs(spec)) ax_freq.set_xlabel("Frequency") ax_freq.set_yscale("log") ax_freq.set_ylabel("Magnitude") fig_place.pyplot(fig) else: logger.warning("AudioReciver is not set. Abort.") break def app_media_constraints(): """ A sample to configure MediaStreamConstraints object """ frame_rate = 5 webrtc_streamer( key="media-constraints", mode=WebRtcMode.SENDRECV, rtc_configuration=RTC_CONFIGURATION, media_stream_constraints={ "video": {"frameRate": {"ideal": frame_rate}}, }, video_html_attrs={ "style": {"width": "50%", "margin": "0 auto", "border": "5px yellow solid"}, "controls": False, "autoPlay": True, }, ) st.write(f"The frame rate is set as {frame_rate}. Video style is changed.") def app_programatically_play(): """ A sample of controlling the playing state from Python. """ playing = st.checkbox("Playing", value=True) webrtc_streamer( key="media-constraints", desired_playing_state=playing, mode=WebRtcMode.SENDRECV, rtc_configuration=RTC_CONFIGURATION, ) if __name__ == "__main__": import os DEBUG = os.environ.get("DEBUG", "false").lower() not in ["false", "no", "0"] logging.basicConfig( format="[%(asctime)s] %(levelname)7s from %(name)s in %(pathname)s:%(lineno)d: " "%(message)s", force=True, ) logger.setLevel(level=logging.DEBUG if DEBUG else logging.INFO) st_webrtc_logger = logging.getLogger("streamlit_webrtc") st_webrtc_logger.setLevel(logging.DEBUG) fsevents_logger = logging.getLogger("fsevents") fsevents_logger.setLevel(logging.WARNING) main()