File size: 9,075 Bytes
c59f483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import os
import gradio as gr
from auto_gptq import AutoGPTQForCausalLM
# from ctransformers import AutoModelForCausalLM, AutoConfig, Config
from transformers import AutoTokenizer, pipeline, GenerationConfig
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.retrievers import MultiQueryRetriever
# from langchain.retrievers.document_compressors import LLMChainExtractor
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferWindowMemory
from langchain_community.llms import llamacpp, huggingface_pipeline
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.chains.question_answering import load_qa_chain
from huggingface_hub import hf_hub_download
from dotenv import load_dotenv
# import os
# os.getenv('hf_token')
# MODEL_ID, MODEL_BASENAME = "TheBloke/zephyr-7B-beta-GGUF","zephyr-7b-beta.Q5_K_S.gguf"
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a 
standalone question without changing the content in given question.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions.
Read the given context before answering questions and think step by step. If you can not answer a user question based on the provided context, inform the user.
Do not use any other information for answering the user. Provide a detailed answer to the question."""

load_dotenv()

def load_quantized_model_gptq(model_id, model_basename):
    # if ".safetensors" in model_basename:
    #     model_basename = model_basename.replace(".safetensors", "")
    tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, cache_dir = r"E:\AW\LLMs\models")
    model = AutoGPTQForCausalLM.from_quantized(
        model_id,
        # model_basename=model_basename,
        use_safetensors=True,
        trust_remote_code=True,
        device_map="auto",
        use_triton=False,
        cache_dir = r"E:\AW\LLMs\models"
    )
    generation_config = GenerationConfig.from_pretrained(model_id)
    pipe = pipeline(
        "text-generation",
        model=model, #type: ignore
        tokenizer=tokenizer,
        max_length=20000,
        temperature=0.7,
        # top_p=0.95,
        repetition_penalty=1.15,
        generation_config=generation_config,
    )
    local_llm = huggingface_pipeline.HuggingFacePipeline(pipeline=pipe)
    return local_llm

def load_quantized_model(model_id=None):
    MODEL_ID, MODEL_BASENAME = "TheBloke/zephyr-7B-beta-GGUF","zephyr-7b-beta.Q5_K_S.gguf"
    # if model_id == "Zephyr-7b-Beta":
    #     MODEL_ID, MODEL_BASENAME = "TheBloke/zephyr-7B-beta-GGUF","zephyr-7b-beta.Q5_K_S.gguf"
    # elif model_id == "Llama-2-7b-chat":
    #     MODEL_ID, MODEL_BASENAME = "TheBloke/Llama-2-7b-Chat-GGUF","llama-2-7b-chat.Q4_K_M.gguf"

    try:
        # logging.info("Using LlamaCPP for GGUF quantized model")
        model_path = hf_hub_download(
            repo_id=MODEL_ID,
            filename=MODEL_BASENAME, 
            resume_download=True,
            cache_dir = r"E:\AW\LLMs\models"
        )
        kwargs = {
            'model_path': model_path,
            'n_ctx': 10000,
            'max_tokens': 10000,
            'n_batch': 512,
            # 'n_gpu_layers':6,
        }
        # offloading 5 layers to gpu gave ans in 6-7 mins; 3270 mb of VRAM
        return llamacpp.LlamaCpp(**kwargs)
    except TypeError:
        print("Supported model architecture: Llama, Mistral")
        return None

def upload_files(files):
    file_paths = [file.name for file in files]
    return file_paths

with gr.Blocks() as demo:
    gr.Markdown(
    """
    <h2> <center> PrivateGPT </center> </h2>
    """)
    
    with gr.Row():
        with gr.Column(scale=2): #type:ignore
            # with gr.Column(scale=5):
                # with gr.Row():
                #     file_output = gr.File(label="Uploaded Documents",show_label=True)
                # with gr.Row():
                #     upload_button = gr.UploadButton("Click to upload files", file_types=[".pdf", ".csv", ".xlsx", ".txt"], file_count="multiple")
                #     upload_button.upload(upload_files, upload_button, file_output)
            with gr.Row():
                model_id = gr.Radio(["Zephyr-7b-Beta", "Llama-2-7b-chat"], value="Llama-2-7b-chat",label="LLM Model")
                # Temp = gr.Slider(minimum=0, maximum=5, step=0.1, info="Adjust the [random parameter] of LLM from here")
            with gr.Row():    
                mode = gr.Radio(['Document', 'Data'], value='Document',label="QA mode")
                # print(f"selected {model} model with {Temp} temperature")
        persist_directory = "db"
        embeddings = HuggingFaceBgeEmbeddings(
            model_name = "BAAI/bge-small-en-v1.5",
            model_kwargs={"device": "cpu"},
            encode_kwargs = {'normalize_embeddings':True},
            cache_folder=r"E:\AW\LLMs\models",
        )
        db2 = Chroma(persist_directory = persist_directory,embedding_function = embeddings)
        # llm = load_quantized_model(model_id=model_id) #type:ignore
        MODEL_ID = "TheBloke/Llama-2-7B-Chat-GPTQ"
        # MODEL_I = "HuggingFaceH4/zephyr-7b-beta"
        MODEL_BASENAME = "gptq-4bit-32g-actorder_True"
        # ---------------------------------------------------------------------------------------------------
        # llm = load_quantized_model_gptq(model_id=MODEL_ID, model_basename=MODEL_BASENAME)
        llm = load_quantized_model()
        # ---------------------------------------------------------------------------------------------------
        condense_question_prompt_template = PromptTemplate.from_template(_template)
        prompt_template = system_prompt + """
            {context}
            Question: {question}
            Helpful Answer:"""
        qa_prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
        memory = ConversationBufferWindowMemory(memory_key='chat_history', k=1, return_messages=True)

        # memory = ConversationKGMemory(llm=llm, memory_key='chat_history', return_messages=True)
        # compressor = LLMChainExtractor.from_llm(llm=llm)
        # compression_retriever = ContextualCompressionRetriever(
        #     base_compressor=compressor,
        #     base_retriever=db2.as_retriever(search_kwargs={'k':5})
        # )
        retriever_from_llm = MultiQueryRetriever.from_llm(
                retriever=db2.as_retriever(search_kwargs={'k':5}),
                llm = llm,
                # llm = load_quantized_model(model_id="TheBloke/Llama-2-7B-Chat-GPTQ")
        )
        qa2 = ConversationalRetrievalChain(
            # retriever=db.as_retriever(),
            retriever=retriever_from_llm,
            question_generator= LLMChain(llm=llm, prompt=condense_question_prompt_template, memory=memory, verbose=True), #type:ignore
            combine_docs_chain=load_qa_chain(llm=llm, chain_type="stuff", prompt=qa_prompt, verbose=True), #type:ignore
            memory=memory,
            verbose=True,
            # type: ignore
        )
        def add_text(history, text):
            history = history + [(text, None)]
            return history, ""

        def bot(history):
            res = qa2.invoke(
                {
                    'question': history[-1][0],
                    'chat_history': history[:-1]
                }
            )
            history[-1][1] = res['answer']
            torch.cuda.empty_cache()
            return history
        with gr.Column(scale=8): # type: ignore
            with gr.Row():
                chatbot = gr.Chatbot([], elem_id="chatbot",label="Chat", height=500, show_label=True, avatar_images=["user.jpeg","Bot.jpg"])
            with gr.Row():
                with gr.Column(scale=8): # type: ignore
                    txt = gr.Textbox(
                        show_label=False,
                        placeholder="Enter text and press enter",
                        container=False,
                    )
                with gr.Column(scale=1): # type: ignore
                    submit_btn = gr.Button(
                        'Submit',
                        variant='primary'
                    )
                with gr.Column(scale=1): # type: ignore
                    clear_btn = gr.Button(
                        'Clear',
                        variant="stop"
                    )
            txt.submit(add_text, [chatbot, txt], [chatbot, txt]).then(
                bot, chatbot, chatbot
            )
            submit_btn.click(add_text, [chatbot, txt], [chatbot, txt]).then(
                bot, chatbot, chatbot
            )
            clear_btn.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.queue()
    # demo.launch(share=True)
    demo.launch(max_threads=40)