Spaces:
Runtime error
Runtime error
File size: 9,075 Bytes
c59f483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import torch
import os
import gradio as gr
from auto_gptq import AutoGPTQForCausalLM
# from ctransformers import AutoModelForCausalLM, AutoConfig, Config
from transformers import AutoTokenizer, pipeline, GenerationConfig
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.retrievers import MultiQueryRetriever
# from langchain.retrievers.document_compressors import LLMChainExtractor
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferWindowMemory
from langchain_community.llms import llamacpp, huggingface_pipeline
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.chains.question_answering import load_qa_chain
from huggingface_hub import hf_hub_download
from dotenv import load_dotenv
# import os
# os.getenv('hf_token')
# MODEL_ID, MODEL_BASENAME = "TheBloke/zephyr-7B-beta-GGUF","zephyr-7b-beta.Q5_K_S.gguf"
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a
standalone question without changing the content in given question.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions.
Read the given context before answering questions and think step by step. If you can not answer a user question based on the provided context, inform the user.
Do not use any other information for answering the user. Provide a detailed answer to the question."""
load_dotenv()
def load_quantized_model_gptq(model_id, model_basename):
# if ".safetensors" in model_basename:
# model_basename = model_basename.replace(".safetensors", "")
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, cache_dir = r"E:\AW\LLMs\models")
model = AutoGPTQForCausalLM.from_quantized(
model_id,
# model_basename=model_basename,
use_safetensors=True,
trust_remote_code=True,
device_map="auto",
use_triton=False,
cache_dir = r"E:\AW\LLMs\models"
)
generation_config = GenerationConfig.from_pretrained(model_id)
pipe = pipeline(
"text-generation",
model=model, #type: ignore
tokenizer=tokenizer,
max_length=20000,
temperature=0.7,
# top_p=0.95,
repetition_penalty=1.15,
generation_config=generation_config,
)
local_llm = huggingface_pipeline.HuggingFacePipeline(pipeline=pipe)
return local_llm
def load_quantized_model(model_id=None):
MODEL_ID, MODEL_BASENAME = "TheBloke/zephyr-7B-beta-GGUF","zephyr-7b-beta.Q5_K_S.gguf"
# if model_id == "Zephyr-7b-Beta":
# MODEL_ID, MODEL_BASENAME = "TheBloke/zephyr-7B-beta-GGUF","zephyr-7b-beta.Q5_K_S.gguf"
# elif model_id == "Llama-2-7b-chat":
# MODEL_ID, MODEL_BASENAME = "TheBloke/Llama-2-7b-Chat-GGUF","llama-2-7b-chat.Q4_K_M.gguf"
try:
# logging.info("Using LlamaCPP for GGUF quantized model")
model_path = hf_hub_download(
repo_id=MODEL_ID,
filename=MODEL_BASENAME,
resume_download=True,
cache_dir = r"E:\AW\LLMs\models"
)
kwargs = {
'model_path': model_path,
'n_ctx': 10000,
'max_tokens': 10000,
'n_batch': 512,
# 'n_gpu_layers':6,
}
# offloading 5 layers to gpu gave ans in 6-7 mins; 3270 mb of VRAM
return llamacpp.LlamaCpp(**kwargs)
except TypeError:
print("Supported model architecture: Llama, Mistral")
return None
def upload_files(files):
file_paths = [file.name for file in files]
return file_paths
with gr.Blocks() as demo:
gr.Markdown(
"""
<h2> <center> PrivateGPT </center> </h2>
""")
with gr.Row():
with gr.Column(scale=2): #type:ignore
# with gr.Column(scale=5):
# with gr.Row():
# file_output = gr.File(label="Uploaded Documents",show_label=True)
# with gr.Row():
# upload_button = gr.UploadButton("Click to upload files", file_types=[".pdf", ".csv", ".xlsx", ".txt"], file_count="multiple")
# upload_button.upload(upload_files, upload_button, file_output)
with gr.Row():
model_id = gr.Radio(["Zephyr-7b-Beta", "Llama-2-7b-chat"], value="Llama-2-7b-chat",label="LLM Model")
# Temp = gr.Slider(minimum=0, maximum=5, step=0.1, info="Adjust the [random parameter] of LLM from here")
with gr.Row():
mode = gr.Radio(['Document', 'Data'], value='Document',label="QA mode")
# print(f"selected {model} model with {Temp} temperature")
persist_directory = "db"
embeddings = HuggingFaceBgeEmbeddings(
model_name = "BAAI/bge-small-en-v1.5",
model_kwargs={"device": "cpu"},
encode_kwargs = {'normalize_embeddings':True},
cache_folder=r"E:\AW\LLMs\models",
)
db2 = Chroma(persist_directory = persist_directory,embedding_function = embeddings)
# llm = load_quantized_model(model_id=model_id) #type:ignore
MODEL_ID = "TheBloke/Llama-2-7B-Chat-GPTQ"
# MODEL_I = "HuggingFaceH4/zephyr-7b-beta"
MODEL_BASENAME = "gptq-4bit-32g-actorder_True"
# ---------------------------------------------------------------------------------------------------
# llm = load_quantized_model_gptq(model_id=MODEL_ID, model_basename=MODEL_BASENAME)
llm = load_quantized_model()
# ---------------------------------------------------------------------------------------------------
condense_question_prompt_template = PromptTemplate.from_template(_template)
prompt_template = system_prompt + """
{context}
Question: {question}
Helpful Answer:"""
qa_prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
memory = ConversationBufferWindowMemory(memory_key='chat_history', k=1, return_messages=True)
# memory = ConversationKGMemory(llm=llm, memory_key='chat_history', return_messages=True)
# compressor = LLMChainExtractor.from_llm(llm=llm)
# compression_retriever = ContextualCompressionRetriever(
# base_compressor=compressor,
# base_retriever=db2.as_retriever(search_kwargs={'k':5})
# )
retriever_from_llm = MultiQueryRetriever.from_llm(
retriever=db2.as_retriever(search_kwargs={'k':5}),
llm = llm,
# llm = load_quantized_model(model_id="TheBloke/Llama-2-7B-Chat-GPTQ")
)
qa2 = ConversationalRetrievalChain(
# retriever=db.as_retriever(),
retriever=retriever_from_llm,
question_generator= LLMChain(llm=llm, prompt=condense_question_prompt_template, memory=memory, verbose=True), #type:ignore
combine_docs_chain=load_qa_chain(llm=llm, chain_type="stuff", prompt=qa_prompt, verbose=True), #type:ignore
memory=memory,
verbose=True,
# type: ignore
)
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
res = qa2.invoke(
{
'question': history[-1][0],
'chat_history': history[:-1]
}
)
history[-1][1] = res['answer']
torch.cuda.empty_cache()
return history
with gr.Column(scale=8): # type: ignore
with gr.Row():
chatbot = gr.Chatbot([], elem_id="chatbot",label="Chat", height=500, show_label=True, avatar_images=["user.jpeg","Bot.jpg"])
with gr.Row():
with gr.Column(scale=8): # type: ignore
txt = gr.Textbox(
show_label=False,
placeholder="Enter text and press enter",
container=False,
)
with gr.Column(scale=1): # type: ignore
submit_btn = gr.Button(
'Submit',
variant='primary'
)
with gr.Column(scale=1): # type: ignore
clear_btn = gr.Button(
'Clear',
variant="stop"
)
txt.submit(add_text, [chatbot, txt], [chatbot, txt]).then(
bot, chatbot, chatbot
)
submit_btn.click(add_text, [chatbot, txt], [chatbot, txt]).then(
bot, chatbot, chatbot
)
clear_btn.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.queue()
# demo.launch(share=True)
demo.launch(max_threads=40)
|