Spaces:
Sleeping
Sleeping
Upload gr.py
Browse files
gr.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import re
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
from langchain_community.vectorstores import Chroma
|
6 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
7 |
+
# from dotenv import load_dotenv, find_dotenv
|
8 |
+
|
9 |
+
# load_dotenv(find_dotenv(r"LLMs\.env"))
|
10 |
+
HUGGINGFACEHUB_API_TOKEN = os.environ["token"]
|
11 |
+
|
12 |
+
def clean_(l):
|
13 |
+
s = list(l)[0][1]
|
14 |
+
s = s.replace("\n", "=")
|
15 |
+
return re.split('=', s, maxsplit=1)[-1].strip()
|
16 |
+
|
17 |
+
def similarity_search2(vectordb, query, k, unique="True"):
|
18 |
+
print(f"\nQuery Key: {query}, \nrows requested:{k}\nUnique values:{unique}")
|
19 |
+
D = vectordb.similarity_search(query,k)
|
20 |
+
temp = []
|
21 |
+
for d in D:
|
22 |
+
temp.append(clean_(d))
|
23 |
+
del D
|
24 |
+
if unique == "True":
|
25 |
+
return str(np.unique(np.array(temp)))[1:-1]
|
26 |
+
else:
|
27 |
+
return str(np.array(temp))[1:-1]
|
28 |
+
|
29 |
+
with gr.Blocks() as demo:
|
30 |
+
query = gr.Textbox(placeholder="your query", label="Query")
|
31 |
+
k = gr.Slider(10,1000,5, label="number of samples to check")
|
32 |
+
unique = gr.Radio(["True", "False"], label="Return Unique values")
|
33 |
+
|
34 |
+
with gr.Row():
|
35 |
+
btn = gr.Button("Submit")
|
36 |
+
|
37 |
+
def mmt_query(query, k, unique):
|
38 |
+
model_id = "BAAI/bge-large-en-v1.5"
|
39 |
+
model_kwargs = {"device": "cpu"}
|
40 |
+
embedding = HuggingFaceBgeEmbeddings(
|
41 |
+
model_name = model_id,
|
42 |
+
model_kwargs = model_kwargs,
|
43 |
+
encode_kwargs = {'normalize_embeddings':True}
|
44 |
+
)
|
45 |
+
persist_directory = r"data\VectorDB\db_book_mmt"
|
46 |
+
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
|
47 |
+
return similarity_search2(vectordb, query, k, unique)
|
48 |
+
|
49 |
+
output = gr.Textbox()
|
50 |
+
btn.click(mmt_query, [query, k, unique], output)
|
51 |
+
|
52 |
+
# interface = gr.Interface(fn=auto_eda, inputs="dataframe", outputs="json")
|
53 |
+
# demo.queue()
|
54 |
+
demo.launch()
|